Complex Numbers 1 Question 8

8.

The value of $\operatorname{sum} \sum _{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $i=\sqrt{-1}$, equals

(a) $i$

(b) $i-1$

(c) $-i$

(d) 0

(1998, 2M)

Show Answer

Answer:

Correct Answer: 8. (b)

Solution:

  1. $\sum _{n=1}^{13}\left(i^{n}+i^{n+1}\right)=\sum _{n=1}^{13} i^{n}(1+i)=(1+i) \sum _{n=1}^{13} i^{n}$

$ \begin{aligned} & =(1+i)\left(i+i^{2}+i^{3}+\ldots+i^{13}\right)=(1+i) \quad (\frac{i-\left(1-i^{13}\right)}{1-i}) \\ & =(1+i) (\frac{i(1-i)}{1-i})=(1+i) i=i-1 \end{aligned} $

Alternate Solution

Since, sum of any four consecutive powers of iota is zero.

$\therefore \sum _{n=1}^{13}\left(i^{n}+i^{n+1}\right) $

$ =\left(i+i^{2}+\ldots+i^{13}\right) + \left(i^{2}+i^{3}+\ldots+i^{14}\right)$

$=i+i^{2}=i-1$



NCERT Chapter Video Solution

Dual Pane