Complex Numbers 1 Question 8

8. The value of sumn=113(in+in+1), where i=1, equals

(a) i

(b) i1

(c) i

(d) 0

(1998, 2M)

Show Answer

Answer:

Correct Answer: 8. (b)

Solution:

  1. n=113(in+in+1)=n=113in(1+i)=(1+i)n=113in

=(1+i)(i+i2+i3++i13)=(1+i)i(1i13)1i=(1+i)i(1i)1i=(1+i)i=i1

Alternate Solution

Since, sum of any four consecutive powers of iota is zero.

$$ \begin{aligned} \therefore \sum _{n=1}^{13}\left(i^{n}+i^{n+1}\right) & =\left(i+i^{2}+\ldots+i^{13}\right) \

  • & \left(i^{2}+i^{3}+\ldots+i^{14}\right)=i+i^{2}=i-1 \end{aligned} $$


जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक