Complex Numbers 1 Question 3

3.

Let $z \in C$ be such that $|z|<1$. If $\omega=\frac{5+3 z}{5(1-z)}$, then

(2019 Main, 9 April II)

(a) $4 \operatorname{Im}(\omega)>5$

(b) $5 \operatorname{Re}(\omega)>1$

(c) $5 \operatorname{Im}(\omega)<1$

(d) $5 \operatorname{Re}(\omega)>4$

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Given complex number

$ \begin{aligned} & \omega=\frac{5+3 z}{5(1-z)} \\ \Rightarrow \quad & 5 \omega-5 \omega z=5+3 z \\ \Rightarrow \quad & (3+5 \omega) z=5 \omega-5 \\ \Rightarrow \quad & |3+5 \omega||z|=|5 \omega-5| \\ & \quad\left[\text { applying modulus both sides and }\left|z _1 z _2\right|=\left|z_1\right|\left|z _2\right|\right] \\ \therefore & \quad|z|<1 \\ \therefore & \quad|3 + 5 \omega|> |5 \omega -5| \end{aligned} $

$ \Rightarrow \quad \omega+|\frac{3}{5}|>|\omega-1| $

Let $\omega=x+i y$, then $(x+\frac{3}{5}^{2})+y^{2}>(x-1)^{2}+y^{2}$

$\Rightarrow \quad x^{2}+\frac{9}{25}+\frac{6}{5} x>x^{2}+1-2 x$

$\Rightarrow \frac{16 x}{5}>\frac{16}{25} \Rightarrow x>\frac{1}{5} \Rightarrow 5 x>1$

$\Rightarrow \quad 5 \operatorname{Re}(\omega)>1$



NCERT Chapter Video Solution

Dual Pane