Binomial Theorem 2 Question 1

1.

Let (x+10)50+(x10)50=a0+a1x+a2x2++a50x50, for all xR; then a2a0 is equal to

(2019 Main, 11 Jan II)

(a) 12.25

(b) 12.50

(c) 12.00

(d) 12.75

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. We have,

(x+10)50+(x10)50=a0+a1x+a2x2++a50x50

a0+a1x+a2x2++a50x50

=[50C0x50+50C1x4910+50C2x48102++50C501050]+

[50C0x5050C1x4910+50C2x48102+50C501050]

=2[50C0x50+50C2x48102+50C4x46104 ++50C501050]

By comparing coefficients, we get

a2=250C48(10)48;a0=250C50(10)50=2(10)50

a2a0=2(50C2)(10)482(10)50=2504912(10)482(10)50

[50C48=50C2]

=50×492(10×10)=5×4920=24520=12.25



NCERT Chapter Video Solution

Dual Pane