Binomial Theorem 2 Question 1

1. Let (x+10)50+(x10)50=a0+a1x+a2x2++a50x50, for all xR; then a2a0 is equal to

(2019 Main, 11 Jan II)

(a) 12.25

(b) 12.50

(c) 12.00

(d) 12.75

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. We have,

$$ \begin{aligned} & (x+10)^{50}+(x-10)^{50}=a _0+a _1 x+a _2 x^{2}+\ldots+a _{50} x^{50} \ \therefore & a _0+a _1 x+a _2 x^{2}+\ldots+a _{50} x^{50} \ = & {\left[{ }^{50} C _0 x^{50}+{ }^{50} C _1 x^{49} 10+{ }^{50} C _2 x^{48} \cdot 10^{2}+\ldots+{ }^{50} C _{50} 10^{50}\right) } \

  • & {\left.\left[{ }^{50} C _0 x^{50}-{ }^{50} C _1 x^{49} 10+{ }^{50} C _2 x^{48} 10^{2}-\ldots+{ }^{50} C _{50} 10^{50}\right)\right] } \ = & 2\left[{ }^{50} C _0 x^{50}+{ }^{50} C _2 x^{48} \cdot 10^{2}+{ }^{50} C _4 x^{46} \cdot 10^{4}\right. \ & \left.+\ldots+{ }^{50} C _{50} \cdot 10^{50}\right] \end{aligned} $$

By comparing coefficients, we get

a2=250C48(10)48;a0=250C50(10)50=2(10)50a2a0=2(50C2)(10)482(10)50=2504912(10)482(10)50=50×492(10×10)=5×4920=24520=12.25



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक