Binomial Theorem 1 Question 5

6.

If the fourth term in the binomial expansion of (2x+xlog8x)6(x>0) is 20×87, then the value of x is

(a) 82

(b) 83

(c) 8

(d) 82

(2019 Main, 9 April I)

Show Answer

Answer:

Correct Answer: 6. (d)

Solution:

  1. Given binomial is (2x+xlog8x)6

Since, general term in the expansion of (x+a)n is Tr+1=nCrxnrar

T4=T3+1=6C3(2x)63(xlog8x)3=20×87 (given) 

20(23x)x3log8x=20×87

[6C3=20]

23x[3(log8x)3] =(23)7x(33log2x3) = (23)6

[logan(x)=1nlogax for x>0;a>0,1]

xlog2x3=218

On taking log2 both sides, we get

(log2x3)log2x=18(log2x)23log2x18=0(log2x)26log2x+3log2x18=0log2x(log2x6)+3(log2x6)=0(log2x6)(log2x+3)=0log2x=3,6x=23,26x=18,82



NCERT Chapter Video Solution

Dual Pane