Binomial Theorem 1 Question 28

30.

For any odd integer n1,n3(n1)3+ +(1)n113=

Show Answer

Answer:

Correct Answer: 30. (14(n+1)2(2n1))

Solution:

  1. Since, n is an odd integer, (1)n1=1

and n1,n3,n5, etc., are even integers, then

n3(n1)3+(n2)3(n3)3++(1)n113=n3+(n1)3+(n2)3++132[(n1)3+(n3)3++23)]=Σn32×23[n12+n323++13]

[n1,n3,, are even integers ]

=Σn316[Σ(n12)]3

=[n(n+1)2]216[12(n12)(n12+1)]2

=14n2(n+1)216(n1)2(n+1)24×4×4

=14(n+1)2[n2(n1)2]=14(n+1)2(2n1)



NCERT Chapter Video Solution

Dual Pane