Binomial Theorem 1 Question 28

30. For any odd integer n1,n3(n1)3+

+(1)n113=

Show Answer

Solution:

  1. Since, n is an odd integer, (1)n1=1

and n1,n3,n5, etc., are even integers, then

n3(n1)3+(n2)3(n3)3++(1)n113=n3+(n1)3+(n2)3++132[(n1)3+(n3)3++23)]=Σn32×23n12+n323++13

[n1,n3,, are even integers ]

=Σn316Σn123

=n(n+1)221612n12n12+12

=14n2(n+1)216(n1)2(n+1)24×4×4

=14(n+1)2[n2(n1)2]=14(n+1)2(2n1)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक