Binomial Theorem 1 Question 2

2.

If the coefficients of $x^{2}$ and $x^{3}$ are both zero, in the expansion of the expression $\left(1+a x+b x^{2}\right)(1-3 x)^{15}$ in powers of $x$, then the ordered pair $(a, b)$ is equal to

(2019 Main, 10 April I)

(a) $(28,315)$

(b) $(-21,714)$

(c) $(28,861)$

(d) $(-54,315)$

Show Answer

Answer:

Correct Answer: 2. (a)

Solution:

  1. Given expression is $\left(1+a x+b x^{2}\right)(1-3 x)^{15}$. In the expansion of binomial $(1-3 x)^{15}$, the $(r+1)$ th term is

$ T_{r+1}={ }^{15} C_{r}(-3 x)^{r}={ }^{15} C_{r}(-3)^{r} x^{r} $

Now, coefficient of $x^{2}$, in the expansion of $\left(1+a x+b x^{2}\right)(1-3 x)^{15}$ is

${ }^{15} C_{2}(-3)^{2}+a^{15} C_{1}(-3)^{1}+b{ }^{15} C_{0}(-3)^{0}=0$ (given)

$\Rightarrow(105 \times 9)-45 a+b=0$

$\Rightarrow 45 a-b=945$ $\quad$ …….(i)

Similarly, the coefficient of $x^{3}$, in the expansion of $\left(1+a x+b x^{2}\right)(1-3 x)^{15}$ is

${ }^{15} C_{3}(-3)^{3}+a{ }^{15} C_{2}(-3)^{2}+b{ }^{15} C_{1}(-3)^{1}=0 \quad$ (given)

$\Rightarrow-12285+945 a-45 b=0$

$\Rightarrow \quad 63 a-3 b=819$

$ \Rightarrow \quad 21 a-b=273 $ $\quad$ …….(ii)

From Eqs. (i) and (ii), we get

$ 24 a=672 \Rightarrow a=28 $

So, $\quad b=315$

$\Rightarrow \quad(a, b)=(28,315)$



NCERT Chapter Video Solution

Dual Pane