Binomial Theorem 1 Question 2

2. If the coefficients of x2 and x3 are both zero, in the expansion of the expression (1+ax+bx2)(13x)15 in powers of x, then the ordered pair (a,b) is equal to

(2019 Main, 10 April I)

(a) (28,315)

(b) (21,714)

(c) (28,861)

(d) (54,315)

Show Answer

Answer:

Correct Answer: 2. (c)

Solution:

  1. Given expression is (1+ax+bx2)(13x)15. In the expansion of binomial (13x)15, the (r+1) th term is

Tr+1=15Cr(3x)r=15Cr(3)rxr

Now, coefficient of x2, in the expansion of (1+ax+bx2)(13x)15 is

15C2(3)2+a15C1(3)1+b15C0(3)0=0 (given)

(105×9)45a+b=0

45ab=945

Similarly, the coefficient of x3, in the expansion of (1+ax+bx2)(13x)15 is

15C3(3)3+a15C2(3)2+b15C1(3)1=0 (given)

12285+945a45b=0

63a3b=819

21ab=273

From Eqs. (i) and (ii), we get

24a=672a=28

So, b=315

(a,b)=(28,315)

Key Idea Use the general term (or (r+1) th term) in the expansion of binomial (a+b)n

i.e.

Tr+1=nCranrbr

Let a binomial 2x23x26, it’s (r+1) th term

=Tr+1=6Cr(2x2)6r3x2=6Cr(3)r(2)6rx122r2r=6Cr(3)r(2)6rx124r

Now, the term independent of x in the expansion of 160x8812x23x2

= the term independent of x in the expansion of 1602x23x26+ the term independent of x in the expansion of x8812x23x26

=6C360(3)3(2)63x124(3) [put r=3] +1816C5(3)5(2)65x124(5)x8 [put r=5]

=13(3)323+35×2(6)81

=3672=36



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक