Binomial Theorem 1 Question 19

21.

Coefficient of $t^{24}$ in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is

(a) ${ }^{12} C_{6}+3$

(b) ${ }^{12} C_{6}+1$

(c) ${ }^{12} C_{6}$

(d) ${ }^{12} C_{6}+2$

(2003, 1M)

Show Answer

Answer:

Correct Answer: 21. (d)

Solution:

  1. Here, Coefficient of $t^{24}$ in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$

$=$ Coefficient of $t^{24}$ in $\left(1+t^{2}\right)^{12} \cdot\left(1+t^{12}+t^{24}+t^{36}\right)$

$=$ Coefficient of $t^{24}$ in

$ \left(1+t^{2}\right)^{12}+t^{12}\left(1+t^{2}\right)^{12}+t^{24}\left(1+t^{2}\right)^{12} $

[neglecting $t^{36}\left(1+t^{2}\right)^{12}$ ]

$=$ Coefficient of $t^{24}=\left({ }^{12} C_{12}+{ }^{12} C_{6}+{ }^{12} C_{0}\right)=2+{ }^{12} C_{6}$



NCERT Chapter Video Solution

Dual Pane