Binomial Theorem 1 Question 19

21. Coefficient of $t^{24}$ in $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is

(a) ${ }^{12} C _6+3$

(b) ${ }^{12} C _6+1$

(c) ${ }^{12} C _6$

(d) ${ }^{12} C _6+2$

(2003, 1M)

Show Answer

Solution:

  1. Here, Coefficient of $t^{24}$ in ${\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right) }$ $=$ Coefficient of $t^{24}$ in ${\left(1+t^{2}\right)^{12} \cdot\left(1+t^{12}+t^{24}+t^{36}\right) }$ $=$ Coefficient of $t^{24}$ in

$$ {\left(1+t^{2}\right)^{12}+t^{12}\left(1+t^{2}\right)^{12}+t^{24}\left(1+t^{2}\right)^{12} } $$

[neglecting $t^{36}\left(1+t^{2}\right)^{12}$ ]

$=$ Coefficient of $t^{24}=\left({ }^{12} C _{12}+{ }^{12} C _6+{ }^{12} C _0\right)=2+{ }^{12} C _6$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक