Binomial Theorem 1 Question 16

17.

If the number of terms in the expansion of $(1-\frac{2}{x}+{\frac{4}{x^{2}}})^{n}, x \neq 0$, is 28 , then the sum of the coefficients of all the terms in this expansion, is

(a) 64

(b) 2187

(c) 243

(d) 729

(2016 Main)

Show Answer

Answer:

Correct Answer: 17. (d)

Solution:

  1. Clearly, number of terms in the expansion of

$(1-\frac{2}{x}+{\frac{4}{x^{2}}})^{n} \text { is } \frac{(n+2)(n+1)}{2} \text { or }{ }^{n+2} C_{2} $

$\text { [assuming } \frac{1}{x} \text { and } \frac{1}{x^{2}} \text { distinct] } $

$\therefore \frac{(n+2)(n+1)}{2}=28 $

$\Rightarrow (n+2)(n+1)=56=(6+1)(6+2) $

$\Rightarrow n=6$

Hence, sum of coefficients $=(1-2+4)^{6}=3^{6}=729$

Note As $\frac{1}{x}$ and $\frac{1}{x^{2}}$ are functions of same variables, therefore number of dissimilar terms will be $2 n+1$, i.e. odd, which is not possible.

Hence, it contains error.



NCERT Chapter Video Solution

Dual Pane