Binomial Theorem 1 Question 16

17. If the number of terms in the expansion of 12x+4x2n,x0, is 28 , then the sum of the coefficients of all the terms in this expansion, is

(a) 64

(b) 2187

(c) 243

(d) 729

(2016 Main)

Show Answer

Answer:

Correct Answer: 17. (5)

Solution:

  1. Clearly, number of terms in the expansion of

12x+4x2n is (n+2)(n+1)2 or n+2C2. [assuming 1x and 1x2 distinct] (n+2)(n+1)2=28(n+2)(n+1)=56=(6+1)(6+2)n=6

Hence, sum of coefficients =(12+4)6=36=729 Note As 1x and 1x2 are functions of same variables, therefore number of dissimilar terms will be 2n+1, i.e. odd, which is not possible. Hence, it contains error.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक