Binomial Theorem 1 Question 13

14.

The coefficient of $t^{4}$ in the expansion of $(\frac{1-t^{6}}{1-t})^3$ is

(a) 12

(b) 10

(c) 15

(d) 14

Show Answer

Answer:

Correct Answer: 14. (c)

Solution:

  1. Clearly, $(\frac{1-t^{6}}{1-t})^3=\left(1-t^{6}\right)^{3}(1-t)^{-3}$

$\therefore$ Coefficient of $t^{4}$ in $\left(1-t^{6}\right)^{3}(1-t)^{-3}$

$=$ Coefficient of $t^{4}$ in $\left(1-t^{18}-3 t^{6}+3 t^{12}\right)(1-t)^{-3}$

$=$ Coefficient of $t^{4}$ in $(1-t)^{-3}$

$={ }^{3+4-1} C_{4}={ }^{6} C_{4}=15$

$ \left(\because \text { coefficient of } x^{r} \text { in }(1-x)^{-n}={ }^{n+r-1} C_{r}\right) $



NCERT Chapter Video Solution

Dual Pane