Binomial Theorem 1 Question 13

14. The coefficient of $t^{4}$ in the expansion of $\frac{1-t^{6}}{1-t}$ is

(a) 12

(b) 10

(c) 15

(d) 14

Show Answer

Answer:

Correct Answer: 14. (a)

Solution:

  1. Clearly, $\frac{1-t^{6}}{1-t}=\left(1-t^{6}\right)^{3}(1-t)^{-3}$

$\therefore$ Coefficient of $t^{4}$ in $\left(1-t^{6}\right)^{3}(1-t)^{-3}$

$=$ Coefficient of $t^{4}$ in $\left(1-t^{18}-3 t^{6}+3 t^{12}\right)(1-t)^{-3}$

$=$ Coefficient of $t^{4}$ in $(1-t)^{-3}$

$={ }^{3+4-1} C _4={ }^{6} C _4=15$

$$ \left(\because \text { coefficient of } x^{r} \text { in }(1-x)^{-n}={ }^{n+r-1} C _r\right) $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक