Binomial Theorem 1 Question 13
14. The coefficient of $t^{4}$ in the expansion of $\frac{1-t^{6}}{1-t}$ is
(a) 12
(b) 10
(c) 15
(d) 14
Show Answer
Answer:
Correct Answer: 14. (a)
Solution:
- Clearly, $\frac{1-t^{6}}{1-t}=\left(1-t^{6}\right)^{3}(1-t)^{-3}$
$\therefore$ Coefficient of $t^{4}$ in $\left(1-t^{6}\right)^{3}(1-t)^{-3}$
$=$ Coefficient of $t^{4}$ in $\left(1-t^{18}-3 t^{6}+3 t^{12}\right)(1-t)^{-3}$
$=$ Coefficient of $t^{4}$ in $(1-t)^{-3}$
$={ }^{3+4-1} C _4={ }^{6} C _4=15$
$$ \left(\because \text { coefficient of } x^{r} \text { in }(1-x)^{-n}={ }^{n+r-1} C _r\right) $$