Application of Derivatives 4 Question 45

####47. If S is a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a,b,c and d denote the length of the sides of the quadrilateral, then prove that 2a2+b2+d24.

(1997,5 M)

Show Answer

Answer:

Correct Answer: 47. 2x2y+2=0,2x+2y2=0

Solution:

  1. Let the square S is to be bounded by the lines x=±1/2 and y=±1/2.

We have, a2=x1122+12y12

=x12y12x1y1+12

Similarly, b2=x22y12x2+y1+12

c2=x22y22+x2+y2+12

d2=x12y22+x1y2+12

a2+b2+c2+d2=2(x12+y12+x22+y22)+2

Therefore, 0x12,x22,y12,y2214

0x12+x22+y12+y22102(x12+x22+y12+y22)2 But 22(x12+x22+y12+y22)+24

Alternate Solution

c2=x22+y22

b2=(1x2)2+y12a2=(1y1)2+(1x1)2d2=x12+(1y2)2

On adding Eqs. (i), (ii), (iii) and (iv), we get

Missing or unrecognized delimiter for \left

Missing or unrecognized delimiter for \left

where x1,y1,x2,y2 all vary in the interval [0,1].

Now, consider the function y=x2+(1x)2,0x1 differentiating dydx=2x2(1x). For maximum or minimumdydx=0.

2x2(1x)=02x2+2x=0

4x=2x=1/2

Again

d2ydx2=2+2=4

Hence, y is minimum at x=12 and its minimum value is 1/4. Clearly, value is maximum when x=1.

Minimum value of a2+b2+c2+d2=12+12+12+12=2 and maximum value is 1+1+1+1=4



NCERT Chapter Video Solution

Dual Pane