Application of Derivatives 4 Question 25

####26. Find the coordinates of all the points P on the ellipse x2a2+y2b2=1, for which the area of the PON is maximum, where O denotes the origin and N is the foot of the perpendicular from O to the tangent at P.

(a) ±a2a2+b2,±b2a2+b2

(b) ±a2a2b2,±b2a2b2

(c) ±a2a2+b2,±b2a2b2

(d) ±a2a2b2,±b2a2+b2

(1990,10M)

Show Answer

Answer:

Correct Answer: 26. (b, c)

Solution:

  1. Let the coordinates of P be (acosθ,bsinθ)

Equations of tangents at P is

xacosθ+ybsinθ=1

Again, equation of normal at point P is

axsecθbycosecθ=a2b2

Let M be foot of perpendicular from O to PK, the normal at P.

Area of OPN=12 (Area of rectangle OMPN )

=12ONOM

Now, ON=1cos2θa2+sin2θb2=abb2cos2θ+a2sin2θ

[perpendicular from O, to line NP ]

and OM=a2b2a2sec2θ+b2cosec2θ=(a2b2)cosθsinθa2sin2θ+b2cos2θ

Thus, area of OPN=ab(a2b2)cosθsinθ2(a2sin2θ+b2cos2θ)

=ab(a2b2)tanθ2(a2tan2θ+b2)

 Let f(θ)=tanθα2tan2θ+b2[0<θ<π/2]f(θ)=sec2θ(a2tan2θ+b2)tanθ(2a2tanθsec2θ)(a2tan2θ+b2)2=sec2θ(a2tan2θ+b22a2tan2θ)(a2tan2θ+b2)2=sec2θ(atanθ+b)(batanθ)(a2tan2θ+b2)2

For maximum or minimum, we put

f(θ)=0batanθ=0[sec2θ0,atanθ+b0,0<θ<π/2]tanθ=b/a

Also, f(θ)

$

0 \text {, if } 0<\theta<\tan ^{-1}(b / a) $

<0, if tan1(b/a)<θ<π/2

Therefore, f(θ) has maximum, when

θ=tan1batanθ=ba

Again, sinθ=ba2+b2,cosθ=aa2+b2

By using symmetry, we get the required points

±a2a2+b2,±b2a2+b2



NCERT Chapter Video Solution

Dual Pane