Application of Derivatives 2 Question 27

####27. Using the relation 2(1cosx)<x2,x0 or prove that sin(tanx)x,x[0,π/4].

(2003, 4M)

Show Answer

Answer:

Correct Answer: 27. (c)

Solution:

  1. Let

f(x)=sin(tanx)xf(x)=cos(tanx)sec2x1=cos(tanx)(1+tan2x)1

=tan2xcos(tanx)+cos(tanx)1

>tan2xcos(tanx)tan2x2

2(1cosx)<x2,x0cosx>1x22

cos(tanx)>1tan2x2

f(x)>tan2xcos(tanx)12

>tan2x[cos(tanx)cos(π/3)]>0

f(x) is increasing function, for all x[0,π/4]

As

f(0)=0f(x)0, for all x[0,π/4]sin(tanx)x



NCERT Chapter Video Solution

Dual Pane