Application of Derivatives 2 Question 27
27. Using the relation or prove that .
(2003, 4M)
Show Answer
Answer:
Correct Answer: 27. (c)
Solution:
- Let
$$ \begin{array}{r} =\tan ^{2} x{\cos (\tan x)}+\cos (\tan x)-1 \
\tan ^{2} x \cos (\tan x)-\frac{\tan ^{2} x}{2} \ \because 2(1-\cos x)<x^{2}, x \neq 0 \Rightarrow \cos x>1-\frac{x^{2}}{2} \ \Rightarrow \quad \cos (\tan x)>1-\frac{\tan ^{2} x}{2} \end{array} $$
As