Application of Derivatives 2 Question 27

27. Using the relation 2(1cosx)<x2,x0 or prove that sin(tanx)x,x[0,π/4].

(2003, 4M)

Show Answer

Answer:

Correct Answer: 27. (c)

Solution:

  1. Let

f(x)=sin(tanx)xf(x)=cos(tanx)sec2x1=cos(tanx)(1+tan2x)1

$$ \begin{array}{r} =\tan ^{2} x{\cos (\tan x)}+\cos (\tan x)-1 \

\tan ^{2} x \cos (\tan x)-\frac{\tan ^{2} x}{2} \ \because 2(1-\cos x)<x^{2}, x \neq 0 \Rightarrow \cos x>1-\frac{x^{2}}{2} \ \Rightarrow \quad \cos (\tan x)>1-\frac{\tan ^{2} x}{2} \end{array} $$

f(x)>tan2xcos(tanx)12

>tan2x[cos(tanx)cos(π/3)]>0

f(x) is increasing function, for all x[0,π/4]

As

f(0)=0f(x)0, for all x[0,π/4]sin(tanx)x



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक