Application of Derivatives 1 Question 22
####22. The slope of the tangent to the curve $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ at the point $(1,3)$ is
(2014 Adv.)
Show Answer
Answer:
(8)
Solution:
- Slope of tangent at the point $\left(x_{1}, y_{1}\right)$ is $\frac{d y}{d x}{ }{\left(x{1}, y_{1}\right)}$.
Given curve, $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$
$\Rightarrow 2\left(y-x^{5}\right) \frac{d y}{d x}-5 x^{4}=\left(1+x^{2}\right)^{2}+2 x\left(1+x^{2}\right) \cdot 2 x$
Put $x=1$ and $y=3, d y / d x=8$