Application of Derivatives 1 Question 22

22. The slope of the tangent to the curve $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ at the point $(1,3)$ is

(2014 Adv.)

Show Answer

Solution:

  1. Slope of tangent at the point $\left(x _1, y _1\right)$ is $\frac{d y}{d x}{ } _{\left(x _1, y _1\right)}$.

Given curve, $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$

$\Rightarrow 2\left(y-x^{5}\right) \frac{d y}{d x}-5 x^{4}=\left(1+x^{2}\right)^{2}+2 x\left(1+x^{2}\right) \cdot 2 x$

Put $x=1$ and $y=3, d y / d x=8$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक