3D Geometry 3 Question 61

####61. Consider the lines

L1:x12=y1=z+31,L2:x41=y+31=z+32 and the planes P1:7x+y+2z=3,P2:3x+5y6z=4. Let ax+by+cz=d the equation of the plane passing through the point of intersection of lines L1 and L2 and perpendicular to planes P1 and P2.

Match List I with List II and select the correct answer using the code given below the lists.

(2013 Adv.)

List I List II
P. a= 1. 13
Q. b= 2. -3
R. c= 3. 1
S. d= 4. -2

Codes

P Q R S P Q R S
(a) 3 2 4 1 (b) 1 3 4 2
(c) 3 2 1 4 (d) 2 4 1 3
Show Answer

Answer:

Correct Answer: 61. (a)

Solution:

  1. L1:x12=y01=z(3)1

 Normal of plane P:n=|i^j^k^712356|=i^(16)j^(426)+k^(32)=16i^+48j^+32k^

DR’s of normal n=i^3j^2k^

Point of intersection of L1 and L2.

2K1+1=K2+4 and k1=k23k1=2 and k2=1

Point of intersection (5,2,1)

Now equation of plane,

1(x5)3(y+2)2(z+1)=0x3y2z13=0x3y2z=13a1,b3,c2,d13



NCERT Chapter Video Solution

Dual Pane