3D Geometry 3 Question 61

61. Consider the lines

$L _1: \frac{x-1}{2}=\frac{y}{-1}=\frac{z+3}{1}, L _2: \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2}$ and the planes $P _1: 7 x+y+2 z=3, \quad P _2: 3 x+5 y-6 z=4 . \quad$ Let $a x+b y+c z=d$ the equation of the plane passing through the point of intersection of lines $L _1$ and $L _2$ and perpendicular to planes $P _1$ and $P _2$.

Match List I with List II and select the correct answer using the code given below the lists.

(2013 Adv.)

List I List II
P. $a=$ 1. 13
Q. $b=$ 2. -3
R. $c=$ 3. 1
S. $d=$ 4. -2

Codes

$P$ $Q$ $R$ $S$ $P$ $Q$ $R$ $S$
(a) 3 2 4 1 (b) 1 3 4 2
(c) 3 2 1 4 (d) 2 4 1 3
Show Answer

Answer:

Correct Answer: 61. (a) 62. $A \rightarrow r, B \rightarrow q ; C \rightarrow p ; D \rightarrow s$

Solution:

  1. $L _1: \frac{x-1}{2}=\frac{y-0}{-1}=\frac{z-(-3)}{1}$

$ \begin{aligned} \text { Normal of plane } P: \mathbf{n} & =\left|\begin{array}{ccc} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 7 & 1 & 2 \\ 3 & 5 & -6 \end{array}\right| \\ & =\hat{\mathbf{i}}(-16)-\hat{\mathbf{j}}(-42-6)+\hat{\mathbf{k}}(32) \\ & =-16 \hat{\mathbf{i}}+48 \hat{\mathbf{j}}+32 \hat{\mathbf{k}} \end{aligned} $

DR’s of normal $\mathbf{n}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$

Point of intersection of $L _1$ and $L _2$.

$ \begin{aligned} \Rightarrow & & 2 K _1+1 & =K _2+4 \\ \text { and } & & -k _1 & =k _2-3 \\ \Rightarrow & & k _1 & =2 \text { and } k _2=1 \end{aligned} $

$\therefore$ Point of intersection $(5,-2,-1)$

Now equation of plane,

$ \begin{aligned} & 1 \cdot(x-5)-3(y+2)-2(z+1)=0 \\ & \Rightarrow \quad x-3 y-2 z-13=0 \\ & \Rightarrow \quad x-3 y-2 z=13 \\ & \therefore \quad a \rightarrow 1, b \rightarrow-3, c \rightarrow-2, d \rightarrow 13 \end{aligned} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक