Work Power And Energy
Work Done By Constant Force :
PYQ-2023-Work-Power-And-Energy-Q5, PYQ-2023-Work-Power-And-Energy-Q7
$$\mathbf{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{s}}$$
Work Done By Multiple Forces:
$$ \Sigma \vec{F}=\vec{F_1}+\vec{F_2}+\vec{F_3}+\ldots \ldots $$
$$ W=[\Sigma \vec{F}] \cdot \vec{s}$$
$$ W=\vec{F_1} \cdot \vec{s}+\vec{F_2} \cdot \vec{s}+\vec{F_3} \cdot \vec{s}+\ldots$$
$$ W=W_{1}+W_{2}+W_{3}+\ldots$$
Work Done By A Variable Force
PYQ-2023-Work-Power-And-Energy-Q2, PYQ-2023-Work-Power-And-Energy-Q8
The work done $(W)$ by a variable force $(F(x))$ as an object moves from position $x_1$ to position $x_2$ is given by:
$$W = \int_{x_1}^{x_2} F(x) dx$$
Where:
$W$ is the work done. $F(x)$ is the variable force as a function of position x. $x_1$ and $x_2$ are the initial and final positions, respectively.
Relation Between Momentum and Kinetic Energy:
PYQ-2023-Work-Power-And-Energy-Q6
$$\mathrm{K}=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}} \text { and } \mathrm{P}=\sqrt{2 \mathrm{mK}} ; \mathrm{P}=\text { linear momentum }$$
Potential Energy:
PYQ-2023-Work-Power-And-Energy-Q9
$$\int_{U_{1}}^{U_{2}} d U=-\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r} \quad \text { i.e., } $$
$$U_{2}-U_{1}=-\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r}=-W$$
$$U=-\int_{\infty}^{r} \vec{F} \cdot d \vec{r}=-W$$
Conservative Forces:
$$\mathrm{F}=-\frac{\partial \mathrm{U}}{\partial \mathrm{r}}$$
Work-Energy Theorem:
PYQ-2023-Motion-In-One-Dimension-Q7
$$W_{C}+W_NC+W_PS=\Delta K$$
Modified Form of Work-Energy Theorem:
$$W_{C}=-\Delta U$$
$$W_{NC}+W_{PS}=\Delta K+\Delta U$$
$$W_{NC}+W_{PS}=\Delta E$$
Conservation of Momentum
PYQ-2023-COM-Q1, PYQ-2023-COM-Q2, PYQ-2023-COM-Q3, PYQ-2023-COM-Q4, PYQ-2023-COM-Q5, PYQ-2023-COM-Q6, PYQ-2023-COM-Q7
$$\sum \mathbf{p} _{\text{initial}} = \sum \mathbf{p} _{\text{final}}$$
Power:
The average power ( $\bar{P}$ or $P_{a v}$ ) delivered by an agent is given by $\bar{P}$ or
$$P_{a v}=\frac{W}{t}$$
$$P=\frac{\vec{F} \cdot d \vec{S}}{d t}=\vec{F} \cdot \frac{d \vec{S}}{d t}=\vec{F} \cdot \vec{V}$$
Impulse:
Impulse of a force $F$ action on a body is defined as :-
$$\vec{J}=\int_{t_{i}}^{t_{f}} F d t \quad \vec{J}=\Delta \vec{P}$$
Impulse - Momentum Theorem
Important points :
(i). Gravitational force and spring force are always non-impulsive. (ii). An impulsive force can only be balanced by another impulsive force.
Coefficient Of Restitution (e):
$$e=\frac{\text { Impulse of reformation }}{\text { Impulse of deformation }}=\frac{\int F_{r} d t}{\int F_{d} d t}$$
$$=\frac{\text { Velocity of separation along line of impact }}{\text { Velocity of approach along line of impact }}$$
(a) e=1
$\Rightarrow$ Impulse of Reformation =Impulse of Deformation
$\Rightarrow$ Velocity of separation $=$ Velocity of approach
$\Rightarrow$ Kinetic Energy may be conserved
$\Rightarrow$ Elastic collision.
(b) e = 0
$\Rightarrow$ Impulse of reformation $=0$
$\Rightarrow$ Velocity of separation $=0$
$\Rightarrow$ Kinetic Energy is not conserved
$\Rightarrow$ Perfectly Inelastic collision.
(c) 0 < e <1
$\Rightarrow$ Impulse of Reformation $<$ Impulse of Deformation
$\Rightarrow$ Velocity of separation $<$ Velocity of approach
$\Rightarrow$ Kinetic Energy is not conserved
$\Rightarrow$ Inelastic collision.
Variable Mass System :
If a mass is added or ejected from a system, at rate $\mu \mathrm{kg} / \mathrm{s}$ and relative velocity $\vec{v_{rel}}$ (w.r.t. the system), then the force exerted by this mass on the system has magnitude $\mu\left|\vec{v}_{\text {rel }}\right|$.
Thrust Force $\left(\vec{F}_{t}\right)$:
$$\vec{F_t}=\vec{v_{rel}}\left(\frac{dm}{dt}\right)$$
Rocket Propulsion :
If gravity is ignored and initial velocity of the rocket $u=0$;
$$v=v_{r} \ln \left(\frac{m_{0}}{m}\right)$$