Sets And Relation

Laws of Algebra of sets (Properties of sets):

  • Commutative law

$$A \cup B=B \cup A $$

$$ A \cap B=B \cap A$$

  • Associative law

$$(A \cup B) \cup C=A \cup(B \cup C) $$ $$ (A \cap B) \cap C=A \cap(B \cap C)$$

  • Distributive law $$A \cup(B \cap C)=(A \cup B) \cap(A \cup C) $$ $$ A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$$

  • De-morgan law $$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} $$ $$ (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$$

  • Identity law $$A \cap U=A $$ $$ A \cup \phi=A$$

  • Complement law

$$A \cup A^{\prime}=U$$ $$ A \cap A^{\prime}=\phi$$ $$ \left(A^{\prime}\right)^{\prime}=A$$

  • Idempotent law $$A \cap A=A$$ $$ A \cup A=A$$

Some important results on number of elements in sets:

PYQ-2023-Sequence_and_Series-Q20

$\quad$ If $A, B, C$ are finite sets and $U$ be the finite universal set then

  • $$n(A \cup B)=n(A)+n(B)-n(A \cap B)$$

  • $$\quad n(A-B)=n(A)-n(A \cap B)$$

  • $$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$$

  • Number of elements in exactly two of the sets $A, B, C$

$$n(A \cap B)+n(B \cap C)+n(C \cap A)-3 n(A \cap B \cap C)$$

  • Number of elements in exactly one of the sets $A, B, C$ $$ n(A)+n(B)+n(C)-2 n(A \cap B)-2 n(B \cap C)-2 n(A \cap C) +3 n(A \cap B \cap C) $$

  • If A has n elements, then P(A) has $2^n$ elements

  • The total number of subsets of a finite set containing n elements is $2^n$

  • Number of proper subsets of A, containing n elements is $2^n - 1$

  • Number of non-empty subsets of A, containing n elements is $2^n - 1$

Types of relations :

PYQ-2023-Sequence_and_Series-Q21