Hyperbola
$\boxed{\begin{matrix} \text{General form of equation of hyperbola: ~} Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\ \ \text{If}~ B^2 - 4AC > 0 \text{,~ then it is a hyperbola. } \quad \quad \quad \quad \quad \quad \quad \quad \end{matrix}}$
Standard formulas:
-
Standard equation of the hyperbola is $$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \text{~ where, ~} b^{2}=a^{2}\left(e^{2}-1\right)$$
-
Focii : $$S \equiv( \pm a e, 0)$$
-
Directrices : $$x= \pm \frac{\mathrm{a}}{\mathrm{e}}$$
-
Vertices : $$A \equiv( \pm a, 0)$$
-
Latus Rectum($\ell$): $$\ell=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=2 \mathrm{a}\left(\mathrm{e}^{2}-1\right)$$
Conjugate hyperbola :
$$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text{~ and~ }-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text{,~ are conjugate hyperbolas of each.}$$
Auxiliary circle:
$$x^{2}+y^{2}=a^{2}$$
Parametric representation :
$$x=a \sec \theta ~ ~ \text{and ~}y=b \tan \theta$$
Position of a point ‘P’ w.r.t. a hyperbola :
$$S_{1} \equiv \frac{x_{1}{ }^{2}}{a^{2}}-\frac{y_{1}{ }^{2}}{b^{2}}-1>,= \text{or} <0$$
$\quad$ according as the point $\left(x_{1}, y_{1}\right)$ lies inside, on or outside the curve.
Tangents :
-
Slope Form : $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
-
Point Form : at the point $\left(x_{1}, y_{1}\right)$ is $\frac{x_{x_{1}}}{a^{2}}-\frac{y_{1}}{b^{2}}=1$
-
Parametric Form : $\frac{\mathrm{x} \sec \theta}{\mathrm{a}}-\frac{\mathrm{y} \tan \theta}{\mathrm{b}}=1$.
Normals :
- At the point $P\left(x_{1}, y_{1}\right)$ is:
$$\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}=a^{2} e^{2}$$
- At the point $P(a \sec \theta, b \tan \theta)$ is:
$$\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}=a^{2} e^{2}$$
- Equation of normals in terms of its slope ’ $m$ ’ are:
$$y=m x \pm \frac{\left(a^{2}+b^{2}\right) m}{\sqrt{a^{2}-b^{2} m^{2}}}$$
Asymptotes:
- Pair of asymptotes:
$$\frac{x}{a}+\frac{y}{b}=0 ~ \text{and} ~ \frac{x}{a}-\frac{y}{b}=0$$
$$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$$
-
Angle b/w asymptotes of $\frac{x^2 }{a^2}-\frac{y^2 }{b^2}=1$ is: $$2 \tan^{-1}(\frac{b}{a})$$
-
Product of the perpendicular from any point on the hyperbola $\frac{x^2 }{a^2}-\frac{y^2 }{b^2}=1$ to its asymptotes is a constant to $\frac{(ab)^2}{a^2+b^2}.$
Rectangular or equilateral hyperbola:
$$x y=c^{2} ~ $$
- Vertices :
$$( \pm c, \pm c)$$
- Focii :
$$( \pm \sqrt{2} c, \pm \sqrt{2} c)$$
- Directrices :
$$x+y= \pm \sqrt{2} c$$
- Latus Rectum: PYQ-2023-Hyperbola-Q4
$$ \ell=2 \sqrt{2} \mathrm{c}= T.A. = C.A.$$
- Parametric equation:
$$x=c t, y=\frac{c}{t}~ ~, t \in \mathbb{R} - {0}$$
- Equation of the tangent:
$\qquad \qquad$ At $P\left(x_{1}, y_{1}\right)$ is:
$$\frac{x}{x_1} + \frac{y}{y_1}=2 $$
$\qquad \qquad$ At $\hspace{1mm} P(t)$ is:
$$\hspace{1mm}\frac{x}{t}+t y=2 c$$
- Equation of the normal at $P(t)$ is:
$$x^{3}-y t=c\left(t^{4}-1\right)$$
- Chord with a given middle point as $(h, k)$ is:
$$k x+h y=2 h k$$
- Eccentricity is: $\sqrt{2}$
Semi latus rectum:
$\qquad$ It is the half of the latus rectum : $ \frac{(b^2)}{a}$
Condition for tangency and points of contact:
$\qquad$ Condition for line $y=mx+c$ tangent to hyperbola $\frac{x^2}{a^2}- \frac{y^2}{b^2}$ is that $c^2=(am)^2 - b^2$ and the coordinates of the points of contact are $$\left(\pm \frac{a^2 m}{\sqrt{(am)^2}-b^2}, \pm \frac{b^2}{\sqrt{(am)^2}-b^2}\right)$$
Equation of a tangent in point form:
$\qquad$ At a point $(x_1, y_1)$ is: $$\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1$$
Equation of pair of tangents:
$\qquad$ From a point to hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \text{~ is ~ } S S_1 = T^2$
$$ \text{ ~ where, ~} S= \frac{x^2}{a^2}-\frac{y^2}{b^2}-1, ~ S_1 = \frac{(x_1)^2}{a^2}-\frac{(y_1)^2}{b^2}-1 \text{~ and ~} T= \frac{(x x_1)}{a^2}-\frac{y (y_1)}{b^2}-1 $$
Chord of contact:
$\qquad$ From a point $(x_1, y_1)$ to hyperbola $\frac{x^2 }{a^2}-\frac{y^2 }{b^2}=1$ is:
$$T=0 ~ \text{,where, ~} T= \frac{(x x_1)}{a^2}-\frac{y (y_1)}{b^2}-1$$
Diameter:
-
Equation of diameter:
The equation of a diameter bisecting a system of parallel chords of slope m of the hyperbola $\frac{x^2 }{a^2}-\frac{y^2 }{b^2}=1$ is: $$y=\frac{b^2}{a^2 m}x$$
-
Conjugate diameters:
$y = m_1 x$ and $y = m_2x$ be conjugate diameters of the hyperbola $ \frac{x^2 }{a^2}-\frac{y^2 }{b^2}=1$
Rectangular hyperbola:
-
Tangent:
-
Point Form: The equation of the tangent at $(x_1, y_1)$ to the hyperbola $xy =c^2$ is $ xy_1 + yx_1 = 2c^2$
-
Parametric Form: The equation of the tangent at $(ct, \frac{c}{t})$ to the hyperbola $xy = c^2$ is $ \frac{x}{t} + yt = 2c$
-
-
Normal:
-
Point Form: The equation of the normal at $(x_1, y_1)$ to the hyperbola $xy =c^2$ is $ x x_1 - y y_1 = (x_1)^2 - (y_1)^2$
-
Parametric Form: The equation of the normal at $(ct, \frac{c}{t})$ to the hyperbola $xy = c^2$ is $ xt - \frac{y}{t}= ct^2 - \frac{c}{t^2}$
-