sets

  • In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but is the oldest and the youngest. - G.H. HARDY

1.1 Introduction

The concept of set serves as a fundamental part of the present day mathematics. Today this concept is being used in almost every branch of mathematics. Sets are used to define the concepts of relations and functions. The study of geometry, sequences, probability, etc. requires the knowledge of sets.

image

The theory of sets was developed by German mathematician Georg Cantor (1845-1918). He first encountered sets while working on “problems on trigonometric series”. In this Chapter, we discuss some basic definitions and operations involving sets.

1.2 Sets and their Representations

In everyday life, we often speak of collections of objects of a particular kind, such as, a pack of cards, a crowd of people, a cricket team, etc. In mathematics also, we come across collections, for example, of natural numbers, points, prime numbers, etc. More specially, we examine the following collections:

(i) Odd natural numbers less than 10, i.e., 1, 3, 5, 7, 9

(ii) The rivers of India

(iii) The vowels in the English alphabet, namely, $a, e, i, o, u$

(iv) Various kinds of triangles

(v) Prime factors of 210, namely, 2,3,5 and 7

(vi) The solution of the equation: $x^{2}-5 x+6=0$, viz, 2 and 3 .

We note that each of the above example is a well-defined collection of objects in the sense that we can definitely decide whether a given particular object belongs to a given collection or not. For example, we can say that the river Nile does not belong to the collection of rivers of India. On the other hand, the river Ganga does belong to this colleciton.

We give below a few more examples of sets used particularly in mathematics, viz.

$\mathbf{N}$ : the set of all natural numbers

$\mathbf{Z}$ : the set of all integers

$\mathbf{Q}$ : the set of all rational numbers

$\mathbf{R}$ : the set of real numbers

$\mathbf{Z^{+}} $: the set of positive integers

$\mathbf{Q^{+}} $: the set of positive rational numbers, and

$\mathbf{R^{+}} $: the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout this text.

Again the collection of five most renowned mathematicians of the world is not well-defined, because the criterion for determining a mathematician as most renowned may vary from person to person. Thus, it is not a well-defined collection.

We shall say that a set is a well-defined collection of objects.

The following points may be noted :

(i) Objects, elements and members of a set are synonymous terms.

(ii) Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.

(iii) The elements of a set are represented by small letters $a, b, c, x, y, z$, etc.

If $a$ is an element of a set A, we say that " $a$ belongs to A" the Greek symbol $\in$ (epsilon) is used to denote the phrase ‘belongs to’. Thus, we write $a \in A$. If ’ $b$ ’ is not an element of a set $A$, we write $b \notin A$ and read " $b$ does not belong to A".

Thus, in the set $V$ of vowels in the English alphabet, $a \in V$ but $b \notin V$. In the set $P$ of prime factors of $30,3 \in P$ but $15 \notin P$.

There are two methods of representing a set :

(i) Roster or tabular form

(ii) Set-builder form.

(i) In roster form, all the elements of a set are listed, the elements are being separated by commas and are enclosed within braces { } . For example, the set of all even positive integers less than 7 is described in roster form as $\{2,4,6\}$. Some more examples of representing a set in roster form are given below :

(a) The set of all natural numbers which divide 42 is $\{1,2,3,6,7,14,21,42\}$.

Note - In roster form, the order in which the elements are listed is immaterial. Thus, the above set can also be represented as $\{1,3,7,21,2,6,14,42\}$.

(b) The set of all vowels in the English alphabet is $\{a, e, i, o, u\}$.

(c) The set of odd natural numbers is represented by $\{1,3,5, \ldots\}$. The dots tell us that the list of odd numbers continue indefinitely.

Note - It may be noted that while writing the set in roster form an element is not generally repeated, i.e., all the elements are taken as distinct. For example, the set of letters forming the word ‘SCHOOL’ is $\{S, C, H, O, L\}$ or $\{H, O, L, C, S\}$. Here, the order of listing elements has no relevance.

(ii) In set-builder form, all the elements of a set possess a single common property which is not possessed by any element outside the set. For example, in the set $\{a, e, i, o, u\}$, all the elements possess a common property, namely, each of them is a vowel in the English alphabet, and no other letter possess this property. Denoting this set by $V$, we write

$V=\{x: x$ is a vowel in English alphabet $\}$

It may be observed that we describe the element of the set by using a symbol $x$ (any other symbol like the letters $y, z$, etc. could be used) which is followed by a colon " : “. After the sign of colon, we write the characteristic property possessed by the elements of the set and then enclose the whole description within braces. The above description of the set $V$ is read as “the set of all $x$ such that $x$ is a vowel of the English alphabet”. In this description the braces stand for “the set of all”, the colon stands for “such that”. For example, the set

$A=\{x: x$ is a natural number and $3<x<10\}$ is read as “the set of all $x$ such that $x$ is a natural number and $x$ lies between 3 and 10.” Hence, the numbers 4, 5, 6, 7,8 and 9 are the elements of the set $A$.

If we denote the sets described in $(a),(b)$ and $(c)$ above in roster form by $A, B$, $C$, respectively, then $A, B, C$ can also be represented in set-builder form as follows:

$A=\{x: x$ is a natural number which divides 42 $\}$

$B=\{y: y$ is a vowel in the English alphabet $\}$

$C=\{z: z$ is an odd natural number $\}$

Example 1 Write the solution set of the equation $x^{2}+x-2=0$ in roster form.

Solution The given equation can be written as

$$ (x-1)(x+2)=0 \text {, i. e., } x=1,-2 $$

Therefore, the solution set of the given equation can be written in roster form as $\{1,-2\}$.

Example 2 Write the set $\{x: x$ is a positive integer and $x^{2}<40\}$ in the roster form.

Solution The required numbers are $1,2,3,4,5,6$. So, the given set in the roster form is $\{1,2,3,4,5,6\}$.

Example 3 Write the set $A=\{1,4,9,16,25, \ldots\}$ in set-builder form.

Solution We may write the set A as

$$ A=\{x: x \text { is the square of a natural number }\} $$

Alternatively, we can write

$$ A=\{x: x=n^{2}, \text { where } n \in \mathbf{N}\} $$

Example 4 Write the set $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\}$ in the set-builder form.

Solution We see that each member in the given set has the numerator one less than the denominator. Also, the numerator begin from 1 and do not exceed 6 . Hence, in the set-builder form the given set is

$$ \{ x: x=\frac{n}{n+1}, \text { where } n \text { is a natural number and } 1 \leq n \leq 6 \} $$

Example 5 Match each of the set on the left described in the roster form with the same set on the right described in the set-builder form :

$$ \begin{array}{ll} (i) \hspace{2 mm} \{P, R, I, N, C, A, L\} & (a) \hspace{2 mm} \{x: x \text{ is a positive integer and is a divisor of 18 } \} \\ (ii) \hspace{2 mm}\{0\} & (b)\hspace{2 mm} \{x: x \text{ is an integer and } x^{2}-9=0\} \\ (iii)\hspace{2 mm} \{1,2,3,6,9,18\} & (c)\hspace{2 mm} \{x: x \text { is a letter of the word PRINCIPAL }\} \\ (iv)\hspace{2 mm} \{{3,-3\}} & (d) \hspace{2 mm} \{x: x \text{ is an integer and } x+1=1\} \end{array} $$

Solution Since in (d), there are 9 letters in the word PRINCIPAL and two letters P and I are repeated, so (i) matches (d). Similarly, (ii) matches (c) as $x+1=1$ implies $x=0$. Also, 1, 2 ,3, 6, 9, 18 are all divisors of 18 and so (iii) matches (a). Finally, $x^{2}-9=0$ implies $x=3,-3$ and so (iv) matches (b).

EXERCISE 1.1

1. Which of the following are sets? Justify your answer.

(i) The collection of all the months of a year beginning with the letter J.

(ii) The collection of ten most talented writers of India.

(iii) A team of eleven best-cricket batsmen of the world.

(iv) The collection of all boys in your class.

(v) The collection of all natural numbers less than 100.

(vi) A collection of novels written by the writer Munshi Prem Chand.

(vii) The collection of all even integers.

(viii) The collection of questions in this Chapter.

(ix) A collection of most dangerous animals of the world.

Show Answer

Answer :

(i) The collection of all months of a year beginning with the letter $J$ is a well-defined collection of objects because one can definitely identify a month that belongs to this collection.

Hence, this collection is a set.

(ii) The collection of ten most talented writers of India is not a well-defined collection because the criteria for determining a writer’s talent may vary from person to person.

Hence, this collection is not a set.

(iii) A team of eleven best cricket batsmen of the world is not a well-defined collection because the criteria for determining a batsman’s talent may vary from person to person.

Hence, this collection is not a set.

(iv) The collection of all boys in your class is a well-defined collection because you can definitely identify a boy who belongs to this collection.

Hence, this collection is a set.

(v) The collection of all natural numbers less than 100 is a well-defined collection because one can definitely identify a number that belongs to this collection.

Hence, this collection is a set.

(vi) A collection of novels written by the writer Munshi Prem Chand is a well-defined collection because one can definitely identify a book that belongs to this collection.

Hence, this collection is a set. (vii) The collection of all even integers is a well-defined collection because one can definitely identify an even integer that belongs to this collection.

Hence, this collection is a set.

(viii) The collection of questions in this chapter is a well-defined collection because one can definitely identify a question that belongs to this chapter.

Hence, this collection is a set.

(ix) The collection of most dangerous animals of the world is not a well-defined collection because the criteria for determining the dangerousness of an animal can vary from person to person.

Hence, this collection is not a set.

2. Let $A=\{1,2,3,4,5,6\}$. Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

(i) $5 \ldots A$

(ii) $8 \ldots A$

(iii) $0 \ldots A$

(iv) $4 \ldots A$

(v) $2\ldots A$

(vi) $10 \ldots$ A

Show Answer

Answer :

(i) $5 \in A$

(ii) $8 \notin A$

(iii) $\quad 0 \notin A$ (iv) $4 \in A$

(v) $2 \in A$ (vi)

$10 \notin A$

3. Write the following sets in roster form:

(i) $A=\{x: x \text{ is an integer and} -3 \leq x<7\}$

(ii) $B=\{x: x \text{ is a natural number less than } 6 \}$

(iii) $C=\{x:x\text{ is a two-digit natural number such that the sum of its digits is } 8\}$

(iv) $D=\{x: x \text{ is a prime number which is divisor of } 60 \}$

(v) $E=$ The set of all letters in the word TRIGONOMETRY

(vi) $F=$ The set of all letters in the word BETTER

Show Answer

Answer :

(i) $A=\{x: x$ is an integer and - $3<x<7 \}$

The elements of this set are -2 , -$1,0,1,2,3,4,5$, and 6 only.

4. Write the following sets in the set-builder form :

(i) $\{3,6,9,12\}$

(ii) $\{2,4,8,16,32\}$

(iii) $\{5,25,125,625\}$

(iv) $\{2,4,6, \ldots\}$

(v) $\{1,4,9, \ldots, 100\}$

Show Answer

Answer :

(i) $\{3,6,9,12\}=\{x: x=3 n, n \in N$ and $1 \leq n \leq 4\}$

(ii) $\{2,4,8,16,32\}$

It can be seen that $2=2^{1}, 4=2^{2}, 8=2^{3}, 16=2^{4}$, and $32=2^{5}$.

$\therefore\{2,4,8,16,32\}=\{x: x=2^{n}, n _{\in} N.$ and $.1 \leq n \leq 5\}$

(iii) $\{5,25,125,625\}$

It can be seen that $5=5^{1}, 25=5^{2}, 125=5^{3}$, and $625=5^{4}$.

$\therefore\{5,25,125,625\}=\{x: x=5^{n}, n \in N.$ and $.1 \leq n \leq 4\}$

(iv) $\{2,4,6 \ldots\}$

It is a set of all even natural numbers.

$\therefore\{2,4,6 \ldots\}=\{x: x$ is an even natural number $\}$

(v) $\{1,4,9 \ldots 100\}$

It can be seen that $1=1^{2}, 4=2^{2}, 9=3^{2} \ldots 100=10^{2}$.

$\therefore\{1,4,9 \ldots 100\}=\{x: x=n^{2}, n \in N.$ and $.1 \leq n \leq 10\}$

5. List all the elements of the following sets :

(i) $A=\{x: x$ is an odd natural number $\}$

(ii) $B=\{x: x$ is an integer, $-\frac{1}{2}< x < \frac{9}{2}\}$

(iii) $C=\{x: x.$ is an integer, $x^{2} \leq 4\}$

(iv) $D=\{x: x$ is a letter in the word “LOYAL” $\}$

(v) $E=\{x: x$ is a month of a year not having 31 days $\}$

(vi) $F=\{x: x$ is a consonant in the English alphabet which precedes $k\}$.

Show Answer

Answer :

(i) $A=\{x: x$ is an odd natural number $\}=\{1,3,5,7,9 \ldots\}$

(ii) $B={x: x \quad-\frac{1}{2}<n<\frac{9}{2}} \quad$ is an integer;

It can be seen 2 and $\frac{2}{2}=4.5$ that

6. Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

(i) $\{1,2,3,6\}$ (a) $\{x: x \text{ is a prime number and a divisor of 6}\}$
(ii) $\{2,3\}$ (b) $\{x: x \text{ is an odd natural number less than 10}\}$
(iii) $\{\mathrm{M}, \mathrm{A}, \mathrm{T}, \mathrm{H}, \mathrm{E}, \mathrm{I}, \mathrm{C}, \mathrm{S}\}$ (c) $\{x: x \text{ is natural number and divisor of 6}\}$
(iv) $\{1,3,5,7,9\}$ (d) $\{x: x\text{ is a letter of the word MATHEMATICS }\}$
Show Answer

Answer :

(i) All the elements of this set are natural numbers as well as the divisors of 6 . Therefore, (i) matches with (c).

(ii) It can be seen that 2 and 3 are prime numbers. They are also the divisors of 6 .

Therefore, (ii) matches with (a).

(iii) All the elements of this set are letters of the word MATHEMATICS. Therefore, (iii) matches with (d).

(iv) All the elements of this set are odd natural numbers less than 10. Therefore, (iv) matches with (b).

1.3 The Empty Set

Consider the set

$A=\{x: x$ is a student of Class XI presently studying in a school $\}$

We can go to the school and count the number of students presently studying in Class XI in the school. Thus, the set A contains a finite number of elements.

We now write another set $B$ as follows:

$B = \{x: x$ is a student presently studying in both Classes X and XI $\}$

We observe that a student cannot study simultaneously in both Classes X and XI. Thus, the set B contains no element at all.

Definition 1 A set which does not contain any element is called the empty set or the null set or the void set.

According to this definition, B is an empty set while A is not an empty set. The empty set is denoted by the symbol $\phi$ or { }.

We give below a few examples of empty sets.

(i) Let $A=\{x: 1<x<2, x$ is a natural number $\}$. Then A is the empty set, because there is no natural number between 1 and 2.

(ii) $B=\{x: x^{2}-2=0$ and $x$ is rational number $\}$. Then $B$ is the empty set because the equation $x^{2}-2=0$ is not satisfied by any rational value of $x$.

(iii) $C =$ $\{x: x$ is an even prime number greater than 2 $\}$. Then $C$ is the empty set, because 2 is the only even prime number.

(iv) $D=\{x: x^{2}=4, x.$ is odd $\}$. Then $D$ is the empty set, because the equation $x^{2}=4$ is not satisfied by any odd value of $x$.

1.4 Finite and Infinite Sets

Let $\quad A=\{1,2,3,4,5\}, \quad B=\{a, b, c, d, e, g\}$

and $\quad C=\{$ men living presently in different parts of the world $\}$

We observe that A contains 5 elements and B contains 6 elements. How many elements does $C$ contain? As it is, we do not know the number of elements in $C$, but it is some natural number which may be quite a big number. By number of elements of a set $S$, we mean the number of distinct elements of the set and we denote it by $n$ (S). If $n$ (S) is a natural number, then $S$ is non-empty finite set.

Consider the set of natural numbers. We see that the number of elements of this set is not finite since there are infinite number of natural numbers. We say that the set of natural numbers is an infinite set. The sets A, B and C given above are finite sets and $n(A)=5, n(B)=6$ and $n(C)=$ some finite number.

Definition 2 A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.

Consider some examples :

(i) Let $W$ be the set of the days of the week. Then $W$ is finite.

(ii) Let $S$ be the set of solutions of the equation $x^{2}-16=0$. Then $S$ is finite.

(iii) Let $G$ be the set of points on a line. Then $G$ is infinite.

When we represent a set in the roster form, we write all the elements of the set within braces { }. It is not possible to write all the elements of an infinite set within braces { } because the numbers of elements of such a set is not finite. So, we represent some infinite set in the roster form by writing a few elements which clearly indicate the structure of the set followed ( or preceded ) by three dots.

For example, $\{1,2,3 \ldots\}$ is the set of natural numbers, $\{1,3,5,7, \ldots\}$ is the set of odd natural numbers, $\{ \ldots,-3,-2,-1,0,1,2,3, \ldots\}$ is the set of integers. All these sets are infinite.

Note - All infinite sets cannot be described in the roster form. For example, the set of real numbers cannot be described in this form, because the elements of this set do not follow any particular pattern.

Example 6 State which of the following sets are finite or infinite :

(i) $\{x: x \in N$ and $(x-1)(x-2)=0\}$

(ii) $\{x: x \in N.$ and $.x^{2}=4\}$

(iii) $\{x: x \in N$ and $2 x-1=0\}$

(iv) $\quad\{x: x \in N$ and $x$ is prime $\}$

(v) $\{x: x \in N$ and $x$ is odd $\}$

Solution (i) Given set $=\{1,2\}$. Hence, it is finite.

(ii) Given set $=\{2\}$. Hence, it is finite.

(iii) Given set $=\phi$. Hence, it is finite.

(iv) The given set is the set of all prime numbers and since set of prime numbers is infinite. Hence the given set is infinite

(v) Since there are infinite number of odd numbers, hence, the given set is infinite.

1.5 Equal Sets

Given two sets A and B, if every element of A is also an element of B and if every element of B is also an element of A, then the sets A and B are said to be equal. Clearly, the two sets have exactly the same elements.

Definition 3 Two sets A and B are said to be equal if they have exactly the same elements and we write $A=B$. Otherwise, the sets are said to be unequal and we write $A \neq B$.

We consider the following examples :

(i) Let $A=\{1,2,3,4\}$ and $B=\{3,1,4,2\}$. Then $A=B$.

(ii) Let $A$ be the set of prime numbers less than 6 and $P$ the set of prime factors of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of 30 and also these are less than 6 .

Note - A set does not change if one or more elements of the set are repeated. For example, the sets $A=\{1,2,3\}$ and $B=\{2,2,1,3,3\}$ are equal, since each element of A is in B and vice-versa. That is why we generally do not repeat any element in describing a set.

Example 7 Find the pairs of equal sets, if any, give reasons:

$$ \begin{aligned} & A=\{0\}, \quad B=\{x: x>15 \text { and } x<5\}, \\ & C=\{x: x-5=0\}, \quad D=\{x: x^{2}=25\}, \\ & E=\{x: x \text { is an integral positive root of the equation } x^{2}-2 x-15=0\} \end{aligned} $$

Solution Since $0 \in A$ and $0$ does not belong to any of the sets $B, C, D$ and $E$, it follows that, $A \neq B, A \neq C, A \neq D, A \neq E$.

Since $B=\phi$ but none of the other sets are empty. Therefore $B \neq C, B \neq D$ and $B \neq E$. Also $C=\{5\}$ but $-5 \in D$, hence $C \neq D$.

Since $E=\{5\}, C=E$. Further, $D=\{-5,5\}$ and $E=\{5\}$, we find that, $D \neq E$. Thus, the only pair of equal sets is $C$ and $E$.

Example 8 Which of the following pairs of sets are equal? Justify your answer.

(i) X, the set of letters in “ALLOY” and B, the set of letters in “LOYAL”.

(ii) $A=\{n: n \in Z.$ and $.n^{2} \leq 4\}$ and $B=\{x: x \in R.$ and $.x^{2}-3 x+2=0\}$.

Solution (i) We have, $X=\{A, L, L, O, Y\}, B=\{L, O, Y, A, L\}$. Then $X$ and $B$ are equal sets as repetition of elements in a set do not change a set. Thus,

$$ X=\{A, L, O, Y\}=B $$

(ii) $A=\{-2,-1,0,1,2\}, B=\{1,2\}$. Since $0 \in A$ and $0 \notin B, A$ and $B$ are not equal sets.

EXERCISE 1.2

1. Which of the following are examples of the null set

(i) Set of odd natural numbers divisible by 2

(ii) Set of even prime numbers

(iii) $\{x: x$ is a natural numbers, $x<5$ and $x>7\}$

(iv) $\{y: y$ is a point common to any two parallel lines $\}$

Show Answer

Answer :

(i) A set of odd natural numbers divisible by 2 is a null set because no odd number is divisible by 2 .

(ii) A set of even prime numbers is not a null set because 2 is an even prime number.

(iii) $\quad\{x$ : $x$ is a natural number, $x<5$ and $x>7\}$ is a null set because a number cannot be simultaneously less than 5 and greater than 7.

(iv) $\{y$ : $y$ is a point common to any two parallel lines $\}$ is a null set because parallel lines do not intersect. Hence, they have no common point.

2. Which of the following sets are finite or infinite

(i) The set of months of a year

(ii) $\{1,2,3, \ldots\}$

(iii) $\{1,2,3, \ldots 99,100\}$

(iv) The set of positive integers greater than 100

(v) The set of prime numbers less than 99

Show Answer

Answer :

(i) The set of months of a year is a finite set because it has 12 elements.

(ii) $\{1,2,3 \ldots\}$ is an infinite set as it has infinite number of natural numbers.

(iii) $\{1,2,3 \ldots 99,100\}$ is a finite set because the numbers from 1 to 100 are finite in number.

(iv) The set of positive integers greater than 100 is an infinite set because positive integers greater than 100 are infinite in number.

(v) The set of prime numbers less than 99 is a finite set because prime numbers less than 99 are finite in number.

3. State whether each of the following set is finite or infinite:

(i) The set of lines which are parallel to the $x$-axis

(ii) The set of letters in the English alphabet

(iii) The set of numbers which are multiple of 5

(iv) The set of animals living on the earth

(v) The set of circles passing through the origin $(0,0)$

Show Answer

Answer :

(i) The set of lines which are parallel to the $x$-axis is an infinite set because lines parallel to the $x$-axis are infinite in number.

(ii) The set of letters in the English alphabet is a finite set because it has 26 elements.

(iii) The set of numbers which are multiple of 5 is an infinite set because multiples of 5 are infinite in number.

(iv) The set of animals living on the earth is a finite set because the number of animals living on the earth is finite (although it is quite a big number).

(v) The set of circles passing through the origin $(0,0)$ is an infinite set because infinite number of circles can pass through the origin.

4. In the following, state whether $A=B$ or not:

(i) $A=\{a, b, c, d\} \quad B=\{d, c, b, a\}$

(ii) $A=\{4,8,12,16\} \quad B=\{8,4,16,18\}$

(iii) $A=\{2,4,6,8,10\} \quad B=\{x: x$ is positive even integer and $x \leq 10\}$

(iv) $A=\{x: x$ is a multiple of 10 $\}, \quad B=\{10,15,20,25,30, \ldots\}$

Show Answer

Answer :

(i) $A=\{a, b, c, d\} ; B=\{d, c, b, a\}$

The order in which the elements of a set are listed is not significant.

$A=B$

(ii) $A=\{4,8,12,16\} ; B=\{8,4,16,18\}$ It can be seen that $12 \in A$ but $12 \notin B$.

$ \therefore A \neq B $

(iii) $A=\{2,4,6,8,10\}$

$B=\{x: x$ is a positive even integer and $x \leq 10\}$

$=\{2,4,6,8,10\}$

$\therefore A=B$ (iv) $A=\{x: x$ is a multiple of 10 $\}$

$B=\{10,15,20,25,30 \ldots\}$

It can be seen that $15 \in B$ but $15 \notin A$.

$\therefore A \neq B$

5. Are the following pair of sets equal ? Give reasons.

(i) $A=\{2,3\}, \quad B=\{x: x$ is solution of $x^{2}+5 x+6=0\}$

(ii) $A=\{x: x$ is a letter in the word FOLLOW $\}$

$B=\{y: y$ is a letter in the word WOLF $\}$

Show Answer

Answer :

(i) $A=\{2,3\} ; B=\{x: x.$ is a solution of $.x^{2}+5 x+6=0\}$

The equation $x^{2}+5 x+6=0$ can be solved as:

$x(x+3)+2(x+3)=0(x+2)(x+3)=0$

$x=-2$ or $x=-3$

$\therefore A=\{2,3\} ; B=\{-2,-3\}$

$\therefore A \neq B$

(ii) $A=\{x: x$ is a letter in the word FOLLOW $\}=\{F, O, L, W\}$

$B=\{y: y$ is a letter in the word WOLF $\}=\{W, O, L, F\}$

The order in which the elements of a set are listed is not significant.

$\therefore A=B$

6. From the sets given below, select equal sets :

$$ \begin{aligned} & A=\{2,4,8,12\}, \quad B=\{1,2,3,4\}, \quad C=\{4,8,12,14\}, \quad D=\{3,1,4,2\} \\ & E=\{-1,1\}, \quad F=\{0, a\}, \quad G=\{1,-1\}, \quad H=\{0,1\} \end{aligned} $$

Show Answer

Answer :

$A={2,4,8,12} ; B={1,2,3,4} ; C={4,8,12,14}$

$D={3,1,4,2} ; E={-1,1} ; F={0, a}$

$G={1,-1} ; A={0,1}$

It can be seen that

$8 \in A, 8 \notin B, 8 \notin D, 8 \notin E, 8 \notin F, 8 \notin G, 8 \notin H$ $\Rightarrow A \neq B, A \neq D, A \neq E, A \neq F, A \neq G, A \neq H$

Also, $2 \in A, 2 \notin C$

$\therefore A \neq C$

$3 \in B, 3 \notin C, 3 \notin E, 3 \notin F, 3 \notin G, 3 \notin H$

$\therefore B \neq C, B \neq E, B \neq F, B \neq G, B \neq H$

$12 \in C, 12 \notin D, 12 \notin E, 12 \notin F, 12 \notin G, 12 \notin H$

$\therefore C \neq D, C \neq E, C \neq F, C \neq G, C \neq H 4$

$\in D, 4 \notin E, 4 \notin F, 4 \notin G, 4 \notin H$

$\therefore D \neq E, D \neq F, D \neq G, D \neq H$

Similarly, $E \neq F, E \neq G, E \neq H$

$F \neq G, F \neq H, G \neq H$

The order in which the elements of a set are listed is not significant.

$\therefore B=D$ and $E=G$

Hence, among the given sets, $B=D$ and $E=G$.

1.6 Subsets

Consider the sets : $X=$ set of all students in your school, $Y=$ set of all students in your class.

We note that every element of $Y$ is also an element of $X$; we say that $Y$ is a subset of $X$. The fact that $Y$ is subset of $X$ is expressed in symbols as $Y \subset X$. The symbol $\subset$ stands for ‘is a subset of’ or ‘is contained in’.

Definition 4 $A$ set $A$ is said to be a subset of a set $B$ if every element of $A$ is also an element of B.

In other words, $A \subset B$ if whenever $a \in A$, then $a \in B$. It is often convenient to use the symbol " $\Rightarrow$ " which means implies. Using this symbol, we can write the definiton of subset as follows:

$$ A \subset B \text { if } a \in A \Rightarrow a \in B $$

We read the above statement as " $A$ is a subset of $B$ if $a$ is an element of $A$ implies that $a$ is also an element of $B$ “. If $A$ is not a subset of $B$, we write $A \not \subset B$.

We may note that for $A$ to be a subset of $B$, all that is needed is that every element of A is in B. It is possible that every element of B may or may not be in A. If it so happens that every element of $B$ is also in $A$, then we shall also have $B \subset A$. In this case, $A$ and $B$ are the same sets so that we have $A \subset B$ and $B \subset A \Leftrightarrow A=B$, where " $\Leftrightarrow$ " is a symbol for two way implications, and is usually read as if and only if (briefly written as “iff”).

It follows from the above definition that every set $A$ is a subset of itself, i.e., $A \subset A$. Since the empty set $\phi$ has no elements, we agree to say that $\phi$ is a subset of every set. We now consider some examples :

(i) The set $\mathbf{Q}$ of rational numbers is a subset of the set $\mathbf{R}$ of real numbes, and we write $\mathbf{Q} \subset R$.

(ii) If $A$ is the set of all divisors of 56 and $B$ the set of all prime divisors of 56, then $B$ is a subset of $A$ and we write $B \subset A$.

(iii) Let $A=\{1,3,5\}$ and $B=\{x: x$ is an odd natural number less than 6 $\}$. Then $A \subset B$ and $B \subset A$ and hence $A=B$.

(iv) Let $A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\}$. Then $A$ is not a subset of $B$, also $B$ is not a subset of $A$.

Let $A$ and $B$ be two sets. If $A \subset B$ and $A \neq B$, then $A$ is called a proper subset of $B$ and $B$ is called superset of $A$. For example,

$A=\{1,2,3\}$ is a proper subset of $B=\{1,2,3,4\}$.

If a set $A$ has only one element, we call it a singleton set. Thus, $\{a\}$ is a singleton set.

Example 9 Consider the sets

$$ \phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}. $$

Insert the symbol $\subset$ or $\not \subset$ between each of the following pair of sets:

(i) $\phi \ldots B$ $\quad$ (ii) $A \ldots B$ $\quad$ (iii) $A \ldots C$ $\quad$ (iv) $B \ldots C$

Solution (i) $\phi \subset B$ as $\phi$ is a subset of every set.

(ii) $A \not \subset B$ as $3 \in A$ and $3 \notin B$

(iii) $A \subset C$ as $1,3 \in A$ also belongs to $C$

(iv) $B \subset C$ as each element of $B$ is also an element of $C$.

Example 10 Let $A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\}$. Is A a subset of B ? No. (Why?). Is B a subset of A? No. (Why?)

Example 11 Let $A, B$ and $C$ be three sets. If $A \in B$ and $B \subset C$, is it true that $A \subset C$ ?. If not, give an example.

Solution No. Let $A=\{1\}, B=\{\{1\}, 2\}$ and $C=\{\{1\}, 2,3\}$. Here $A \in B$ as $A=\{1\}$ and $B \subset C$. But $A \not \subset C$ as $1 \in A$ and $1 \notin C$.

Note that an element of a set can never be a subset of itself.

1.6.1 Subsets of set of real numbers

As noted in Section 1.6, there are many important subsets of $\mathbf{R}$. We give below the names of some of these subsets.

The set of natural numbers $\mathbf{N}=\{1,2,3,4,5, \ldots\}$

The set of integers $\quad \mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

The set of rational numbers $\mathbf{Q}=\{x: x=\frac{p}{q}, p, q \in \mathbf{Z}$ and $q \neq 0\}$ which is read " $\mathbf{Q}$ is the set of all numbers $x$ such that $x$ equals the quotient $\frac{p}{q}$, where $p$ and $q$ are integers and $q$ is not zero”. Members of $\mathbf{Q}$ include -5 (which can be expressed as $-\frac{5}{1}$ ), $\frac{5}{7}, 3 \frac{1}{2} \quad$ (which can be expressed as $\frac{7}{2}$ ) and $-\frac{11}{3}$.

The set of irrational numbers, denoted by $\mathbf{T}$, is composed of all other real numbers. Thus $\quad \mathbf{T}=\{x: x \in \mathbf{R}$ and $x \notin \mathbf{Q}\}$, i.e., all real numbers that are not rational. Members of $\mathbf{T}$ include $\sqrt{2}, \sqrt{5}$ and $\pi$.

Some of the obvious relations among these subsets are:

$$ \mathbf{N} \subset \mathbf{Z} \subset \mathbf{Q}, \mathbf{Q} \subset \mathbf{R}, \mathbf{T} \subset \mathbf{R}, \mathbf{N} \not \subset \mathbf{T} . $$

1.6.2 Intervals as subsets of $\mathbf{R}$

Let $a, b \in \mathbf{R}$ and $a<b$. Then the set of real numbers $\{y: a<y<b\}$ is called an open interval and is denoted by $(a, b)$. All the points between $a$ and $b$ belong to the open interval $(a, b)$ but $a, b$ themselves do not belong to this interval.

The interval which contains the end points also is called closed interval and is denoted by $[a, b]$. Thus

$[a, b]=\{x: a \leq x \leq b\}$

We can also have intervals closed at one end and open at the other, i.e.,

$[a, b]=\{x: a \leq x<b\}$ is an open interval from $a$ to $b$, including $a$ but excluding $b$.

$(a, b]=\{x: a<x \leq b\}$ is an open interval from $a$ to $b$ including $b$ but excluding $a$.

These notations provide an alternative way of designating the subsets of set of real numbers. For example, if $A=(-3,5)$ and $B=[-7,9]$, then $A \subset B$. The set $[0, \infty)$ defines the set of non-negative real numbers, while set $(-\infty, 0)$ defines the set of negative real numbers. The set $(-\infty, \infty)$ describes the set of real numbers in relation to a line extending from $-\infty$ to $\infty$.

On real number line, various types of intervals described above as subsets of $\mathbf{R}$, are shown in the Fig 1.1.

image

Here, we note that an interval contains infinitely many points.

For example, the set $\{x: x \in \mathbf{R},-5<x \leq 7\}$, written in set-builder form, can be written in the form of interval as $(-5,7]$ and the interval $[-3,5)$ can be written in setbuilder form as $\{x:-3 \leq x<5\}$.

The number $(b-a)$ is called the length of any of the intervals $(a, b),[a, b]$, $[a, b)$ or $(a, b]$.

1.7 Universal Set

Usually, in a particular context, we have to deal with the elements and subsets of a basic set which is relevant to that particular context. For example, while studying the system of numbers, we are interested in the set of natural numbers and its subsets such as the set of all prime numbers, the set of all even numbers, and so forth. This basic set is called the “Universal Set”. The universal set is usually denoted by U, and all its subsets by the letters A, B, C, etc.

For example, for the set of all integers, the universal set can be the set of rational numbers or, for that matter, the set $\mathbf{R}$ of real numbers. For another example, in human population studies, the universal set consists of all the people in the world.

EXERCISE 1.3

1. Make correct statements by filling in the symbols $\subset$ or $\not \subset$ in the blank spaces :

(i) $\{2,3,4\} \ldots\{1,2,3,4,5\}$

(ii) $\{a, b, c\} \ldots\{b, c, d\}$

(iii) $\{x: x$ is a student of Class XI of your school $\} \ldots\{x: x$ student of your school $\}$

(iv) $\{x: x$ is a circle in the plane $\} \ldots\{x: x$ is a circle in the same plane with radius 1 unit $\}$

(v) $\{x: x$ is a triangle in a plane $\} \ldots\{x: x$ is a rectangle in the plane $\}$

(vi) $\{x: x$ is an equilateral triangle in a plane $\} \ldots\{x: x$ is a triangle in the same plane $\}$

(vii) $\{x: x$ is an even natural number $\} \ldots\{x: x$ is an integer $\}$

Show Answer

Answer :

(i) $\{2,3,4\} \subset\{1,2,3,4,5\}$

(ii) $\{a, b, c\} \not \subset\{b, c, d\}$

(iii) $\{x$ : $x$ is a student of class XI of your school $\} \subset $ $\{x: x$ is student of your school $\}$

(iv) $\{x: x$ is a circle in the plane $ \} \not \subset \{x: x$ is a circle in the same plane with radius 1 unit $\}$

(v) $\{x: x$ is a triangle in a plane $ \} \not \subset \{x: x $ is a rectangle in the plane $\}$

(vi) $\{x: x$ is an equilateral triangle in a plane $\} \subset \{x: x$ in a triangle in the same plane $\}$

(vii) $\{x: x$ is an even natural number $\} \subset \{x: x$ is an integer $\}$

2. Examine whether the following statements are true or false:

(i) $\{a, b\} \not \subset\{b, c, a\}$

(ii) $\{a, e\} \subset\{x: x$ is a vowel in the English alphabet $\}$

(iii) $\{1,2,3\} \subset\{1,3,5\}$

(iv) $\{a\} \subset\{a, b, c\}$

(v) $\{a\} \in\{a, b, c\}$

(vi)$ \{x: x$ is an even natural number less than 6 $\} \subset \{x: x$ is a natural number which divides 36 $ \}$

Show Answer

Answer :

(i) False. Each element of $\{a, b\}$ is also an element of $\{b, c, a\}$.

(ii) True. a, e are two vowels of the English alphabet.

(iii) False. $2 \in\{1,2,3\}$; however, $2 \notin\{1,3,5\}$

(iv) True. Each element of $\{a\}$ is also an element of $\{a, b, c\}$.

(v) False. The elements of $\{a, b, c\}$ are $a, b, c$. Therefore, $\{a\} \subset\{a, b, c\}$

(vi) True $ \{x: x \text{ is an even natural number less than 6 }\} = \{2,4\} \{x:x \text{ is a natural number which divides 36 } \} = \{1,2,3,4,6,9,12,18,36\}$

3. Let $A=\{1,2,\{3,4\}, 5\}$. Which of the following statements are incorrect and why?

(i) $\{3,4\} \subset A$

(ii) $\{3,4\} \in A$

(iii) $\{\{3,4\}\} \subset A$

(iv) $1 \in A$

(v) $1 \subset A$

(vii) $\{1,2,5\} \in A$

(viii) $\{1,2,3\} \subset A$

(vi) $\{1,2,5\} \subset A$

(x) $\phi \subset A$

(xi) $\{\phi\} \subset A$

(ix) $\phi \in A$

Show Answer

Answer :

$A={1,2,{3,4}, 5}$

(i) The statement ${3,4} \subset A$ is incorrect because $3 \in{3,4}$; however, $3 \notin A$.

(ii) The statement ${3,4} \in A$ is correct because ${3,4}$ is an element of $A$.

(iii) The statement ${{3,4}} \subset A$ is correct because ${3,4} \in{{3,4}}$ and ${3,4} \in A$.

(iv) The statement $1 \in A$ is correct because 1 is an element of $A$.

(v) The statement 1ᄃA is incorrect because an element of a set can never be a subset of itself.

(vi) The statement ${1,2,5} \subset A$ is correct because each element of ${1,2,5}$ is also an element of A.

(vii) The statement ${1,2,5} \in A$ is incorrect because ${1,2,5}$ is not an element of $A$.

(viii) The statement ${1,2,3} \subset A$ is incorrect because $3 \in{1,2,3}$; however, $3 \notin A$.

(ix) The statement $\Phi \in A$ is incorrect because $\Phi$ is not an element of $A$.

(x) The statement $\Phi \subset A$ is correct because $\Phi$ is a subset of every set.

(xi) The statement ${\Phi} \subset A$ is incorrect because $\Phi \in{\Phi}$; however, $\Phi \in A$.

4. Write down all the subsets of the following sets

(i) $\{a\}$

(ii) $\{a, b\}$

(iii) $\{1,2,3\}$

(iv) $\phi$

Show Answer

Answer :

(i) The subsets of ${a}$ are $\Phi$ and ${a}$.

(ii) The subsets of ${a, b}$ are $\Phi,{a},{b}$, and ${a, b}$.

(iii) The subsets of ${1,2,3}$ are $\Phi,{1},{2},{3},{1,2},{2,3},{1,3}$, and

${1,2,3}$

5. Write the following as intervals :

(i) $\{x: x \in R,-4<x \leq 6\}$

(ii) $\{x: x \in R,-12<x<-10\}$

(iii) $\{x: x \in R, 0 \leq x<7\}$

(iv) $\{x: x \in R, 3 \leq x \leq 4\}$

Show Answer

Answer :

(i) ${x: x \quad R,-4<x \leq 6}=(-4,6]$

(ii) ${x: x \quad R,-12<x<-10}=(-12,-10)$

(iii) ${x: \quad R, 0 \leq x<7}=(0,7]$

(iv) $\{x$ : $x \in$ $R, 3 \leq x \leq 4 \}=[3,4]$

6. Write the following intervals in set-builder form :

(i) $(-3,0)$

(ii) $[6,12]$

(iii) $(6,12]$

(iv) $[-23,5)$

Show Answer

Answer :

(i) $(-3,0)={x: x \in R,-3<x<0}$ (ii) $[6,12]={x: x \in R, 6 \leq x \leq 12}$

(iii) $(6,12]={x: x \in R, 6<x \leq 12}$

(iv) $[-23,5)={x: x \in R,-23 \leq x<5}$

7. What universal set(s) would you propose for each of the following :

(i) The set of right triangles.

(ii) The set of isosceles triangles.

Show Answer

Answer :

(i) For the set of right triangles, the universal set can be the set of triangles or the set of polygons.

(ii)For the set of isosceles triangles, the universal set can be the set of triangles or the set of polygons or the set of two-dimensional figures.

8. Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\}$, which of the following may be considered as universal set (s) for all the three sets A, B and C

(i) $\{0,1,2,3,4,5,6\}$

(ii) $\phi$

(iii) $\{0,1,2,3,4,5,6,7,8,9,10\}$

(iv) $\{1,2,3,4,5,6,7,8\}$

Show Answer

Answer :

(i) It can be seen that $A \subset\{0,1,2,3,4,5,6\}$

$B \subset\{0,1,2,3,4,5,6\}$

However, C $\not \subset$ $\{0,1,2,3,4,5,6\}$

Therefore, the set $\{0,1,2,3,4,5,6\}$ cannot be the universal set for the sets A, B, and C.

(ii) $A \not \subset \phi, B$ $ \not \subset $ $\Phi, C \not \subset \Phi$

Therefore, $\Phi$ cannot be the universal set for the sets A, B, and C.

(iii) $A \subset\{0,1,2,3,4,5,6,7,8,9,10\}$

B $\quad \subset\{0,1,2,3,4,5,6,7,8,9,10\}$

C $\subset\{0,1,2,3,4,5,6,7,8,9,10\}$

Therefore, the set $\{0,1,2,3,4,5,6,7,8,9,10\}$ is the universal set for the sets A, B, and C.

(iv) $A \subset\{1,2,3,4,5,6,7,8\}$

$B \subset\{1,2,3,4,5,6,7,8\}$

However, C $\not \subset$ ${1,2,3,4,5,6,7,8}$

Therefore, the set ${1,2,3,4,5,6,7,8}$ cannot be the universal set for the sets A, B, and C.

1.8 Venn Diagrams

Most of the relationships between sets can be represented by means of diagrams which are known as Venn diagrams. Venn diagrams are named after the English logician, John Venn (1834-1883). These diagrams consist of rectangles and closed curves usually circles. The universal set is represented usually by a rectangle and its subsets by circles.

In Venn diagrams, the elements of the sets are written in their respective circles (Figs 1.2 and 1.3)

Illustration 1 In Fig 1.2, $U=\{1,2,3, \ldots, 10\}$ is the universal set of which $A=\{2,4,6,8,10\}$ is a subset.

image

Illustration 2 In Fig 1.3, $U=\{1,2,3, \ldots, 10\}$ is the universal set of which

image

$A=\{2,4,6,8,10\}$ and $B=\{4,6\}$ are subsets, and also $B \subset A$.

The reader will see an extensive use of the Venn diagrams when we discuss the union, intersection and difference of sets.

1.9 Operations on Sets

In earlier classes, we have learnt how to perform the operations of addition, subtraction, multiplication and division on numbers. Each one of these operations was performed on a pair of numbers to get another number. For example, when we perform the operation of addition on the pair of numbers 5 and 13, we get the number 18. Again, performing the operation of multiplication on the pair of numbers 5 and 13 , we get 65 .

Similarly, there are some operations which when performed on two sets give rise to another set. We will now define certain operations on sets and examine their properties. Henceforth, we will refer all our sets as subsets of some universal set.

1.9.1 Union of sets

Let A and B be any two sets. The union of A and B is the set which consists of all the elements of $A$ and all the elements of $B$, the common elements being taken only once. The symbol ’ $\cup$ ’ is used to denote the union. Symbolically, we write $A \cup B$ and usually read as ‘A union $B$ ‘.

Example 12 Let $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$. Find $A \cup B$.

Solution We have $A \cup B=\{2,4,6,8,10,12\}$

Note that the common elements 6 and 8 have been taken only once while writing $A \cup B$

Example 13 Let $A=\{a, e, i, o, u\}$ and $B=\{a, i, u\}$. Show that $A \cup B=A$

Solution We have, $A \cup B=\{a, e, i, o, u\}=A$.

This example illustrates that union of sets $A$ and its subset $B$ is the set $A$ itself, i.e., if $B \subset A$, then $A \cup B=A$.

Example 14 Let $X=\{$ Ram, Geeta, Akbar $\}$ be the set of students of Class XI, who are in school hockey team. Let $Y=\{$ Geeta, David, Ashok $\}$ be the set of students from Class XI who are in the school football team. Find $X \cup Y$ and interpret the set.

Solution We have, $X \cup Y=\{$ Ram, Geeta, Akbar, David, Ashok $\}$. This is the set of students from Class XI who are in the hockey team or the football team or both.

Thus, we can define the union of two sets as follows:

Definition 5 The union of two sets $A$ and $B$ is the set $C$ which consists of all those elements which are either in A or in B (including those which are in both). In symbols, we write. $A \cup B=\{x: x \in A$ or $x \in B\}$

The union of two sets can be represented by a Venn diagram as shown in Fig 1.4.

The shaded portion in Fig 1.4 represents $A \cup B$.

image

Some Properties of the Operation of Union

(i) $A \cup B=B \cup A$ (Commutative law)

(ii) $(A \cup B) \cup C=A \cup(B \cup C)$ (Associative law )

(iii) $A \cup \phi=A \quad$ (Law of identity element, $\phi$ is the identity of $\cup$ )

(iv) $A \cup A=A \quad$ (Idempotent law)

(v) $U \cup A=U \quad$ (Law of $\cup$)

1.9.2 Intersection of sets

The intersection of sets A and B is the set of all elements which are common to both A and B. The symbol ’ $\cap$ ’ is used to denote the intersection. The intersection of two sets A and B is the set of all those elements which belong to both A and B. Symbolically, we write $A \cap B=\{x: x \in A$ and $x \in B\}$.

Example 15 Consider the sets A and B of Example 12. Find A $\cap$ B.

Solution We see that 6,8 are the only elements which are common to both A and B. Hence $A \cap B=\{6,8\}$.

Example 16 Consider the sets $X$ and $Y$ of Example 14. Find $X \cap Y$.

Solution We see that element ‘Geeta’ is the only element common to both. Hence,

$X \cap Y=\{$ Geeta $\}$.

Example 17 Let $A=\{1,2,3,4,5,6,7,8,9,10\}$ and $B=\{2,3,5,7\}$. Find $A \cap B$ and hence show that $A \cap B=B$.

Solution We have $A \cap B=\{2,3,5,7\}=B$. We note that $B \subset A$ and that $A \cap B=B$.

Definition 6 The intersection of two sets A and B is the set of all those elements which belong to both A and B. Symbolically, we write

$A \cap B=\{x: x \in A$ and $x \in B\}$

The shaded portion in Fig 1.5 indicates the intersection of $A$ and $B$.

image

If $A$ and $B$ are two sets such that $A \cap B=\phi$, then $A$ and $B$ are called disjoint sets.

For example, let $A=\{2,4,6,8\}$ and

$B=\{1,3,5,7\}$. Then $A$ and $B$ are disjoint sets, because there are no elements which are common to A and B. The disjoint sets can be represented by means of Venn diagram as shown in the Fig 1.6 In the above diagram, $A$ and $B$ are disjoint sets.

image

Some Properties of Operation of Intersection

(i) $A \cap B=B \cap A \quad$ (Commutative law).

(ii) $(A \cap B) \cap C=A \cap(B \cap C) \quad$ (Associative law).

(iii) $\phi \cap A=\phi, \cup \cap A=A \quad$ (Law of $\phi$ and $\cup$ ).

(iv) $A \cap A=A \quad$ (Idempotent law) (v) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (Distributive law )i. e., $\cap$ distributes over $\cup$

This can be seen easily from the following Venn diagrams [Figs 1.7 (i) to (v)].

image

1.9.3 Difference of sets

The difference of the sets A and B in this order is the set of elements which belong to A but not to B. Symbolically, we write A - B and read as “A minus B”.

Example 18 Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\}$. Find $A-B$ and $B-A$.

Solution We have, $A-B=\{1,3,5\}$, since the elements $1,3,5$ belong to $A$ but not to $B$ and $B-A=\{8\}$, since the element 8 belongs to $B$ and not to $A$.

We note that $A-B \neq B-A$.

Example 19 Let $V={a, e, i, o, u}$ and $B={a, i, k, u}$. Find $V-B$ and $B-V$

Solution We have, $V-B={e, o}$, since the elements $e$, $o$ belong to $V$ but not to $B$ and $B-V={\{k\}}$, since the element $k$ belongs to $B$ but not to $V$.

We note that $V-B \neq B-V$. Using the setbuilder notation, we can rewrite the definition of difference as

$\mathrm{A}-\mathrm{B}= \{x:x \in \mathrm{A and} x \notin \mathrm{B}\}$

The difference of two sets A and B can be represented by Venn diagram as shown Fig 1.8.

image

The shaded portion represents the difference of two sets A and B

Remark The sets $\mathrm{A}-\mathrm{B}, \hspace{1 mm} \mathrm{A} \bigcap \mathrm{B} \text{ and } \mathrm{B} - \mathrm{A}$ are mutually disjoint sets, i.e., the intersecction of any of these two sets is the null set as shown in Fig 1.9

image

EXERCISE 1.4

1. Find the union of each of the following pairs of sets :

(i) $X=\{1,3,5\} \quad Y=\{1,2,3\}$

(ii) $A=[a, e, i, o, u] \quad B=\{a, b, c\}$

(iii) $A=\{x: x$ is a natural number and multiple of 3 $\}$

$B=\{x: x$ is a natural number less than 6 $\}$

(iv) $A=\{x: x$ is a natural number and $1<x \leq 6\}$

$B=\{x: x$ is a natural number and $6<x<10\}$

(v) $A=\{1,2,3\}, B=\phi$

Show Answer

Answer :

(i) $X=\{1,3,5\} Y=\{1,2,3\}$

$X \cup Y=\{1,2,3,5\}$

(ii) $A=\{a, e, i, o, u\} B=\{a, b, c\}$

$A \cup B=\{a, b, c, e, i, o, u\}$

(iii) $ A=\{x: x\}$ is a natural number and multiple of 3 $=\{3,6,9 \ldots \}$

As $ B = \{x: x$ is a natural number less than 6 $ \}=\{1,2,3,4,5,6\}$

$A \cup B={1,2,4,5,3,6,9,12 \ldots}$

$\therefore A \cup B=\{x: x=1,2,4,5\}$ or a multiple of 3

(iv) $A=\{x: x.$ is a natural number and $1<x - 6\}=\{2,3,4,5,6\}$

$B=\{x: x$ is a natural number and $6<x<10\}=\{7,8,9\}$

$A \cup B=\{2,3,4,5,6,7,8,9\}$

$\therefore A B B=\{x: x \in N$ and $1<x<10\}$

(v) $A={1,2,3}, B=\Phi$

$A \cup B={1,2,3}$

2. Let $A=\{a, b\}, B=\{a, b, c\}$. Is $A \subset B$ ? What is $A \cup B$ ?

Answer:

Here, $A={a, b}$ and $B={a, b, c}$

Yes, A $\subset$ B.

$A \cup B=\{a, b, c\}=B$

3. If $A$ and $B$ are two sets such that $A \subset B$, then what is $A \cup B$ ?

Show Answer

Answer :

If $A$ and $B$ are two sets such that $A \subset B$, then $A \cup B=B$.

4. If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\}$; find

(i) $A \cup B$

(ii) $A \cup C$

(iii) $B \cup C$

(iv) $B \cup D$

(v) $A \cup B \cup C$

(vi) $A \cup B \cup D$

(vii) $B \cup C \cup D$

Show Answer

Answer :

$A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\}$

(i) $A \cup B=\{1,2,3,4,5,6\}$

(ii) $A \cup C=\{1,2,3,4,5,6,7,8\}$

(iii) $B \cup C=\{3,4,5,6,7,8\}$

(iv) $B \cup D=\{3,4,5,6,7,8,9,10\}$

(v) $A \cup B \cup C=\{1,2,3,4,5,6,7,8\}$

(vi) $A \cup \cup B \cup D=\{1,2,3,4,5,6,7,8,9,10\}$

(vii) $B \cup C \cup \cup=\{3,4,5,6,7,8,9,10\}$

5. Find the intersection of each pair of sets of question 1 above.

Show Answer

Answer :

(i) $X=\{1,3,5\}, Y=\{1,2,3\}$

$X \cap Y=\{1,3\}$

(ii) $A=\{a, e, i, o, u\}, B=\{a, b, c\}$

$A \cap B=\{a\}$

(iii) $ A= x $ : x is a natural number and multiple of 3$ =(3,6,9 )$

$B=\{x : x \text{ is a natural number less than} 6 \} ={1,2,3,4,5}$

$\therefore A \cap B=\{3\}$

(iv) $A=\{x.$ : xis a natural number and $.1<x < 6 \}=\{2,3,4,5,6\}$

$B=\{x$ : xis a natural number and $6<x<10\}=\{7,8,9\}$

$A \cap B=\Phi$

(v) $A=\{1,2,3\}, B=\Phi$

$A \cap B=\Phi$

6. If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\}$; find

(i) $A \cap B$

(ii) $B \cap C$

(iii) $A \cap C \cap D$

(iv) $A \cap C$

(v) $B \cap D$

(vi) $A \cap(B \cup C)$

(vii) $A \cap D$

(viii) $A \cap(B \cup D)$

(ix) $(A \cap B) \cap(B \cup C)$

(x) $(A \cup D) \cap(B \cup C)$

7. If $A=\{x: x$ is a natural number $\}, B=\{x: x$ is an even natural number $\}$ $C=\{x: x$ is an odd natural number $\}$ and $D=\{x: x$ is a prime number $\}$, find

(i) $A \cap B$

(ii) $A \cap C$

(iii) $A \cap D$

(iv) $B \cap C$

(v) $B \cap D$

(vi) $C \cap D$

Show Answer

Answer :

(i) $A \cap B=\{7,9,11\}$

(ii) $B \cap C=\{11,13\}$

(iii) $A \cap C \cap D=\{A \cap C\} \cap D=\{11\} \cap\{15,17\}=\Phi$

(iv) $A \cap C=\{11\}$

(v) $B \cap D=\Phi$

(vi) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$=\{7,9,11\} \cup\{11\}=\{7,9,11\}$

(vii) $A \cap D=\Phi$

(viii) $A \cap(B \cup D)=(A \cap B) \cup(A \cap D)$

$=\{7,9,11\} \cup \Phi=\{7,9,11\}$

(ix) $(A \cap B) \cap(B \cup C)=\{7,9,11\} \cap\{7,9,11,13,15\}=\{7,9,11\}$

(x) $(A \cup D) \cap(B \cup C)=\{3,5,7,9,11,15,17\} \cap\{7,9,11,13,15\}$

$=\{7,9,11,15\}$

8. Which of the following pairs of sets are disjoint

(i) $\{1,2,3,4\}$ and $\{x: x$ is a natural number and $4 \leq x \leq 6\}$

(ii) $\{a, e, i, o, u\}$ and $\{c, d, e, f\}$

(iii) $\{x: x$ is an even integer $\}$ and $\{x: x$ is an odd integer $\}$

Show Answer

Answer :

(i) $\{1,2,3,4\}$

$\{x: x.$ is a natural number and $4 \underset{-}{<} x \underset{-}{<} 6 \}=\{4,5,6\}$

Now, $\{1,2,3,4\} \cap\{4,5,6\}=\{4\}$

Therefore, this pair of sets is not disjoint.

(ii) $\{a, e, i, o, u\} \cap\{c, d, e, f\}=\{e\}$

Therefore, $\{a, e, i, o, u\}$ and $\{c, d, e, f\}$ are not disjoint.

(iii) $\{x: x$ is an even integer $\} \cap\{x: x$ is an odd integer $\}=$

$\Phi$ Therefore, this pair of sets is disjoint.

9. If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\}$, $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\}$; find

(i) $A-B$

(ii) $A-C$

(iii) $A-D$

(iv) $B-A$

(v) $C-A$

(vi) $D-A$

(vii) $B-C$

(viii) $B-D$

(ix) $C-B$

(x) $D-B$

(xi) $C-D$

(xii) $D-C$

Show Answer

Answer :

(i) $A-B={3,6,9,15,18,21}$

(ii) $A-C={3,9,15,18,21}$

(iii) $A-D={3,6,9,12,18,21}$

(iv) $B-A={4,8,16,20}$

(v) $C-A={2,4,8,10,14,16}$

(vi) $D-A={5,10,20}$

(vii) $B-C={20}$

(viii) $B$ - D $={4,8,12,16}$

(ix) $C-B={2,6,10,14}$

(x) $D-B={5,10,15}$

(xi) $C$ - D $={2,4,6,8,12,14,16}$

(xii) $D-C={5,15,20}$

10. If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\}$, find

(i) $X-Y$

(ii) $Y-X$

(iii) $X \cap Y$

Show Answer

Answer :

(i) $X-Y={a, c}$

(ii) $Y-X={f, g}$ (iii) $X \cap Y=$ ${b, d}$

11. If $\mathbf{R}$ is the set of real numbers and $\mathbf{Q}$ is the set of rational numbers, then what is $\mathbf{R}-\mathbf{Q}$ ?

Show Answer

Answer :

$R$ : set of real numbers

Q: set of rational numbers

Therefore, $R-Q$ is a set of irrational numbers.

12. State whether each of the following statement is true or false. Justify your answer.

(i) $\{2,3,4,5\}$ and $\{3,6\}$ are disjoint sets.

(ii) $\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.

(iii) $\{2,6,10,14\}$ and $\{3,7,11,15\}$ are disjoint sets.

(iv) $\{2,6,10\}$ and $\{3,7,11\}$ are disjoint sets.

Show Answer

Answer :

(i) False

As $3 \in{2,3,4,5}, 3 \in{3,6}$

$\Rightarrow{2,3,4,5} \cap{3,6}={3}$

(ii) False

As $a \in{a, e, i, o, u}, a \in{a, b, c, d}$

$\Rightarrow{a, e, i, o, u} \cap{a, b, c, d}={a}$

(iii) True

As ${2,6,10,14} \cap{3,7,11,15}=\Phi$

(iv) True

As ${2,6,10} \cap{3,7,11}=\Phi$

1.10 Complement of a Set

Let $\cup$ be the universal set which consists of all prime numbers and $A$ be the subset of $\cup$ which consists of all those prime numbers that are not divisors of 42 . Thus, $A=\{x: x \in \cup$ and $x$ is not a divisor of 42 $\}$. We see that $2 \in U$ but $2 \notin A$, because 2 is divisor of 42 . Similarly, $3 \in \cup$ but $3 \notin A$, and $7 \in \cup$ but $7 \notin A$. Now 2,3 and 7 are the only elements of $\cup$ which do not belong to $A$. The set of these three prime numbers, i.e., the set $\{2,3,7\}$ is called the Complement of $A$ with respect to $\cup$, and is denoted by $A^{\prime}$. So we have $A^{\prime}=\{2,3,7\}$. Thus, we see that

$$ A^{\prime}=\{x: x \in U \text { and } x \notin A\} \text { This leads to the following definition. } $$

Definition 7 Let $\cup$ be the universal set and $A$ a subset of $\cup$. Then the complement of $A$ is the set of all elements of $\cup$ which are not the elements of A. Symbolically, we write $A^{\prime}$ to denote the complement of $A$ with respect to $\cup$. Thus,

$$ A^{\prime}=\{x: x \in U \text { and } x \notin A\} \text {. Obviously } A^{\prime}=U-A $$

We note that the complement of a set A can be looked upon, alternatively, as the difference between a universal set $\cup$ and the set $A$.

Example 20 Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9\}$. Find $A^{\prime}$.

Solution We note that $2,4,6,8,10$ are the only elements of $\cup$ which do not belong to A. Hence $\quad A^{\prime}=\{2,4,6,8,10\}$.

Example 21 Let $\cup$ be universal set of all the students of Class XI of a coeducational school and $A$ be the set of all girls in Class XI. Find A’.

Solution Since A is the set of all girls, $A^{\prime}$ is clearly the set of all boys in the class.

Note - If $A$ is a subset of the universal set $\cup$, then its complement $A^{\prime}$ is also a subset of $\cup$.

$ \text{Again in Example 20 above, we have }A’={2,4,6,8,10} $

$ Hence \quad (A’)={x:x\in \cup \text{and}x\notin A’ } $

$ ={1,3,5,7,9}= A $

It is clear from the definition of the complement that for any subset of the universal set U, we have ( A’)’ = A

Now, we want to find the results for $(A \cup B)^{\prime}$ and $A^{\prime} \cap B^{\prime}$ in the followng example.

Example 22 Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$.

Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.

Solution Clearly $A^{\prime}=\{1,4,5,6\}, B^{\prime}=\{1,2,6\}$. Hence $A^{\prime} \cap B^{\prime}=\{1,6\}$

Also $A \cup B=\{2,3,4,5\}$, so that $(A \cup B)^{\prime}=\{1,6\}$

$$ (A \cup B)^{\prime}=\{1,6\}=A^{\prime} \cap B^{\prime} $$

It can be shown that the above result is true in general. If $A$ and $B$ are any two subsets of the universal set $\cup$, then

$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$. Similarly, $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$. These two results are stated in words as follows :

The complement of the union of two sets is the intersection of their complements and the complement of the intersection of two sets is the union of their complements. These are called De Morgan’s laws. These are named after the mathematician De Morgan.

The complement $A^{\prime}$ of a set $A$ can be represented by a Venn diagram as shown in Fig 1.10.

image

Fig 1.10 The shaded portion represents the complement of the set A.

Some Properties of Complement Sets

1. Complement laws:

(i) $A \cup A^{\prime}=U$

(ii) $A \cap A^{\prime}=\phi$

2. De Morgan’s law:

(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

(ii) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

3. Law of double complementation: $(A^{\prime})^{\prime}=A$

4. Laws of empty set and universal set $\phi^{\prime}= \cup$ and $ \cup^{\prime}=\phi$.

These laws can be verified by using Venn diagrams.

EXERCISE 1.5

1. Let $\cup=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\}$. Find (i) $A^{\prime}$ ( ii) $B^{\prime}$ (iiii) $(A \cup C)^{\prime}$ (iv) $(A \cup B)^{\prime}$ (v) $(A^{\prime})^{\prime}$ (vi) $(B-C)^{\prime}$

Show Answer

Answer :

$U={1,2,3,4,5,6,7,8,9}$

$A={1,2,3,4}$

$B={2,4,6,8}$

$C={3,4,5,6}$

(i) $A^{\prime}={5,6,7,8,9}$

(ii) $B^{\prime}={1,3,5,7,9}$

(iii) $A \cup C={1,2,3,4,5,6}$

$\therefore(A \cup C)^{\prime}={7,8,9}$

(iv) $A \cup B={1,2,3,4,6,8}$

$(A \cup B)^{\prime}={5,7,9}$

(v) $(A^{\prime})^{\prime}=A={1,2,3,4}$

(vi) $B-C={2,8}$

$\therefore(B-C)^{\prime}={1,3,4,5,6,7,9}$

2. If $U=\{a, b, c, d, e, f, g, h\}$, find the complements of the following sets :

(i) $A=\{a, b, c\}$

(ii) $B=\{d, e, f, g\}$

(iii) $C=\{a, c, e, g\}$

(iv) $D=\{f, g, h, a\}$

Show Answer

Answer :

$U={a, b, c, d, e, f, g, h}$

(i) $A={a, b, c}$

$A^{\prime}={d, e, f, g, h} $

(ii) $B={d, e, f, g}$

$\therefore B^{\prime}={a, b, c, h}$

(iii) $C={a, c, e, g}$

$\therefore C^{\prime}={b, d, f, h}$

(iv) $D={f, g, h, a}$

$\therefore D^{\prime}={b, c, d, e}$

3. Taking the set of natural numbers as the universal set, write down the complements of the following sets:

(i) $\{x: x$ is an even natural number $\} \quad$

(ii) $\{x: x$ is an odd natural number $\}$

(iii) $\{x: x$ is a positive multiple of 3 $\}$

(iv) $\{x: x$ is a prime number $\}$

(v) $\{x: x$ is a natural number divisible by 3 and 5 $\}$

(vi) $\{x: x$ is a perfect square $\} \quad$

(vii) $\{x: x$ is a perfect cube $\}$

(viii) $\{x: x+5=8\}$

(ix) $\{x: 2 x+5=9\}$

(x) $\{x: x \geq 7\}$

(xi) $\{x: x \in N$ and $2 x+1>10\}$

Show Answer

Answer :

$U=N$ : Set of natural numbers

(i) $\{x: x$ is an even natural number $\}=\{x: x$ is an odd natural number $\}$

(ii) $\{x: x \text{ is an odd natural number }\}^{\prime}=\{x: x$ is an even natural number $\}$

(iii) $\{x: x \text{ is a positive multiple of } 3\}^{\prime}=\ \{x: x \in N$ and $x$ is not a multiple of 3 $ \} $

(iv) $\{x: x \text{ is a prime number }\}^{\prime}=\{x: x$ is a positive composite number and $x=1\}$

(v) $\{x: x \text{ is a natural number divisible by } 3 \text{ and } 5\}^{\prime}=\{x: x$ is a natural number that is not divisible by 3 or 5 $ \}$

(vi) $\{x: x \text{ is a perfect square }\}^{\prime}=\{x: x \in N$ and $x$ is not a perfect square $\}$

(vii) $\{x: x \text{ is a perfect cube }\}^{\prime}=\{x: x \in N$ and $x$ is not a perfect cube $\}$

(viii) $\{x: x+5=8\}^{\prime}=\{x: x \in N$ and $x \neq 3\}$

(ix) $\{x: 2 x+5=9\}^{\prime}=\{x: x \in N$ and $x \neq 2\}$

(x) $\{x: x \underset{\large-}{>} 7\}^{\prime}=\{x: x \in N$ and $x<7\}$

(xi) $\{x: x \in N \text{ and } 2 x+1>10\}^{\prime}=\{x: x \in N$ and $x \leq 9 / 2\}$

4. If $U=\{1,2,3,4,5,6,7,8,9\}, A=\{2,4,6,8\}$ and $B=\{2,3,5,7\}$. Verify that

(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

(ii) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Show Answer

Answer :

$U={1,2,3,4,5,6,7,8,9}$

$A={2,4,6,8}, B={2,3,5,7}$

(i)

$ \begin{aligned} & (A \cup B)^{\prime}={2,3,4,5,6,7,8}^{\prime}={1,9} \\ & A^{\prime} \cap B^{\prime}={1,3,5,7,9} \cap(1,4,6,8,9)={1,9} \\ & \therefore(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \end{aligned} $

(ii)

$ \begin{aligned} & (A \cap B)^{\prime}={2}^{\prime}={1,3,4,5,6,7,8,9} \\ & A^{\prime} \cup B^{\prime}={1,3,5,7,9} \cup{1,4,6,8,9}={1,3,4,5,6,7,8,9} \\ & \therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \end{aligned} $

5. Draw appropriate Venn diagram for each of the following :

(i) $(A \cup B)^{\prime}$,

(ii) $A^{\prime} \cap B^{\prime}$,

(iii) $(A \cap B)^{\prime}$,

(iv) $A^{\prime} \cup B^{\prime}$

Show Answer

Answer :

(ii) $A^{\prime} \cap B^{\prime}$

(iii) $(A \cap B)^{\prime}$

(iv) $A^{\prime} \cup B^{\prime}$

6. Let $\cup$ be the set of all triangles in a plane. If $A$ is the set of all triangles with at least one angle different from $60^{\circ}$, what is $A^{\prime}$ ?

Show Answer

Answer :

$A^{\prime}$ is the set of all equilateral triangles.

7. Fill in the blanks to make each of the following a true statement :

(i) $A \cup A^{\prime}=\ldots$

(ii) $\phi^{\prime} \cap A=\ldots$

(iii) $A \cap A^{\prime}=$

(iv) $U^{\prime} \cap A=\ldots$

Show Answer

Answer :

(i) $A \cup A^{\prime}=U$

(ii) $\Phi^{\prime } \cap A=U \cap A=A$

$\therefore \Phi^{\prime }\cap A=A$

(iii) $A \cap A^\prime=\Phi$

(iv) $ U^\prime \cap A=\Phi$

$\therefore U^\prime \cap A=\Phi$

Miscellaneous Examples

Example 23 Show that the set of letters needed to spell “CATARACT” and the set of letters needed to spell “TRACT” are equal.

Solution Let $X$ be the set of letters in “CATARACT”. Then

$$ X=\{C, A, T, R\} $$

Let $Y$ be the set of letters in “TRACT”. Then

$$ Y=\{T, R, A, C, T\}=\{T, R, A, C\} $$

Since every element in $X$ is in $Y$ and every element in $Y$ is in $X$. It follows that $X=Y$.

Example 24 List all the subsets of the set $\{-1,0,1\}$.

Solution Let $A=\{-1,0,1\}$. The subset of $A$ having no element is the empty set $\phi$. The subsets of A having one element are $\{-1\},\{0\},\{1\}$. The subsets of A having two elements are $\{-1,0\},\{-1,1\},\{0,1\}$. The subset of A having three elements of A is A itself. So, all the subsets of A are $\phi,\{-1\},\{0\},\{1\},\{-1,0\},\{-1,1\}$, $\{0,1\}$ and $\{-1,0,1\}$.

Example 25 Show that $A \cup B=A \cap B$ implies $A=B$

Solution Let $a \in A$. Then $a \in A \cup B$. Since A $\cup B=A \cap B, a \in A \cap B$. So $a \in B$. Therefore, $A \subset B$. Similarly, if $b \in B$, then $b \in A \cup B$. Since

$A \cup B=A \cap B, b \in A \cap B$. So, $b \in A$. Therefore, $B \subset A$. Thus, $A=B$

Miscellaneous Exercise on Chapter 1

1. Decide, among the following sets, which sets are subsets of one and another: $A=\{x: x \in \mathbf{R}.$ and $x$ satisfy $.x^{2}-8 x+12=0\}$,

$B=\{2,4,6\}, \quad C=\{2,4,6,8, \ldots\}, D=\{6\}$.

Show Answer

Answer :

$A=\{x: x \in R.$ and $x$ satisfies $.x^{2}-8 x+12=0\}$

2 and 6 are the only solutions of $x^{2}-8 x+12=0$.

$\therefore A={2,6}$

$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$

$\therefore D \subset A \subset B \subset C$

Hence, $A \subset B, A \subset C, B \subset C, D \subset A, D \subset B, D \subset C$

2. In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

(i) If $x \in A$ and $A \in B$, then $x \in B$

(ii) If $A \subset B$ and $B \in C$, then $A \in C$

(iii) If $A \subset B$ and $B \subset C$, then $A \subset C$

(iv) If $A \not \subset B$ and $B \not \subset C$, then $A \not \subset C$

(v) If $x \in A$ and $A \not \subset B$, then $x \in B$

(vi) If $A \subset B$ and $x \notin B$, then $x \notin A$

Show Answer

Answer :

(i) False

Let $A=\{1,2\}$ and $B=\{1,\{1,2\},\{3\}\}$

Now, $2 \in\{1,2\}$ and $\{1,2\} \in\{\{3\}, 1,\{1,2\}\}$

A $\in$ B

. However, $2 \notin\{\{3\}, 1,\{1,2\}\}$

(ii) False

Let $A=\{2\}, B=\{0,2\}$, and $C=\{1,\{0,2\}, 3\}$

As $A \subset B$

$B \in C$

However, $A \notin C$

(iii) True

Let $A \subset B$ and $B \subset C$.

Let $x \in A$

$\Rightarrow x \in B \quad[\because A \subset B]$

$\Rightarrow x \in C \quad[\because B \subset C]$

$\therefore A\subset C$

(iv) False

$ A=\{1,2\}, B=\{0,6,8\}, \text{ and } C=\{0,1,2,6,9\} $

Let Accordingly, $A \not \subset B$ and $B \not \subset C$.

However, $A \subset C$

(v) False

Let $A=\{3,5,7\}$ and $B=\{3,4,6\}$

Now, $ 5 \in A \text{ and } A \in B$

However, $5 \notin B$

(vi) True

Let $A \subset B$ and $x \notin B$.

To show: $x \notin A$

If possible, suppose $x \notin A$.

Then, $x \in B$, which is a contradiction as $x \notin B$

$\therefore x \notin A$

3. Let $A, B$, and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B=C$.

Show Answer

Answer :

Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.

To show: $B=C$

Let $x \in B$

$ \begin{matrix} \Rightarrow x \in A \cup B & {[B \subset A \cup B]} \\ \Rightarrow x \in A \cup C & {[A \cup B=A \cup C]} \\ \Rightarrow x \in A \text{ or } x \in C & \end{matrix} $

Case $I x$

$\in A$

Also, $x \in B$

$ \begin{aligned} & \therefore x \in A \cap B \\ & \Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C] \end{aligned} $

$\therefore x \in A$ and $x \in C$ :

$x \in C$

$\therefore B \in C $

Similarly, we can show that $ C \in B $

$\therefore B=C$

4. Show that the following four conditions are equivalent:

(i) $A \subset B$ (ii) $A-B=\phi$

(iii) $A \cup B=B$ (iv) $A \cap B=A$

Show Answer

Answer :

First, we have to show that (i) $ \Leftrightarrow $ (ii).

Let $A \subset B$

To show: $A$ -$B = \phi $

If possible, suppose $A$ - $B \neq \Phi$

This means that there exists $x \in A, x \neq B$, which is not possible as $A \subset B$.

$\therefore A$ -$B=\Phi$

$ \therefore A \subset B \Rightarrow A - B = \phi $

(ii)$\Rightarrow$(i)

Let $A$ - $B=\Phi$

To show: $A \subset B$

Let $x \in A$

Clearly, $x \in B$ because if $x \notin B$, then $A$ - $B \neq \Phi$

$ \therefore A - B = 0 \Rightarrow A \subset B \neq \phi $

(ii)$\Rightarrow$(i)

Let $A \subset B$

To show: $A \cup B=B$

Clearly, $B \subset A \cup B$

Let $x \in A \cup B$

$\Rightarrow x \in A$ or $x \in B$

Case I: $x \in A$

$\Rightarrow x \in B \quad[\because A \subset B]$

$\therefore A \cup B \subset B$

Case II: $x \in B$

Then, $A \cup B=B$

Conversely, let $A \cup B=B$

Let $x \in A$

$ \begin{matrix} \Rightarrow x \in A \cup B & {[\because A \subset A \cup B]} \\ \Rightarrow x \in B & {[\because A \cup B=B]} \end{matrix} $

Now, we have to show that (i) $ \Rightarrow$ (iv).

$$ \begin{aligned} & \text{ Let } A \tilde{A} \hookrightarrow \mathring{A} B \\ & \text{ Clearly } A \cap B \subset A \\ & \text{ Let } x \in A \end{aligned} $$

We have to show that $x \in A \cap B$

As A $ \subset B, x \in B$

E

$x \in A \cap B$

$\therefore A \subset A \cap B$

$\therefore, A \subset A \cap B $

Hence, A = A $\cap $ B

Conversely, suppose $A \cap B =A$

Let $x \in A$

$\Rightarrow x \in A \cap B$

$\Rightarrow x \in A$ and $x \in B$

$\Rightarrow x \in B$

$\therefore A \subset B$

Hence, (i) $ \Rightarrow $ (iv).

5. Show that if $A \subset B$, then $C-B \subset C-A$.

Show Answer

Answer :

Let $A \subset B$

To show: C - B C C - A

Let $x \in C-B \Rightarrow x \in C$ and

$x \notin B \Rightarrow x \in C$ and $x \notin A[A$

$\subset B] \Rightarrow x \in C-A$

$\therefore C-B \subset C-A$

6. Show that for any sets $A$ and $B$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B)$

Show Answer

Answer :

To show:

$ \begin{aligned} & (A \cap B) \cup(A-B) \\ & =(A \cap B) \cup\left(A \cap B^{\prime}\right) \\ & =A \cap\left(B \cup B^{\prime}\right) \text { (By distributive law) } \\ & =A \cap U=A \end{aligned} $

Hence $A=(A \cap B) \cup(A-B)$

Also $A \cup(B-A)$

$ \begin{aligned} & =A \cup\left(B \cap A^{\prime}\right) \\ & =(A \cup B) \cap\left(A \cup A^{\prime}\right) \text { (By distributive law) } \\ & =(A \cup B) \cap U \\ & =A \cup B \end{aligned} $

Hence $A \cup(B-A)=A \cup B$.

7. Using properties of sets, show that

(i) $A \cup(A \cap B)=A$

(ii) $A \cap(A \cup B)=A$.

Show Answer

Answer :

(i)

From the distributive property:

$ \begin{aligned} & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\ & A \cup(A \cap B)=(A \cup A) \cap(A \cup B)=A \cap(A \cup B)=A \end{aligned} $

Hence,

$ A \cup(A \cap B)=A $

(ii)

From the distributive property:

$ \begin{aligned} & A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\ & A \cap(A \cup B)=(A \cap A) \cup(A \cap B)=A \cup(A \cap B) \end{aligned} $

From part (i),

$ A \cup(A \cap B)=A $

Hence,

$ A \cap(A \cup B)=A $

8. Show that $A \cap B=A \cap C$ need not imply $B=C$.

Show Answer

Answer :

$ \begin{aligned} & \text { Let } \mathrm{A}=\{0,1\} \ & \mathrm{B}=\{\mathrm{O}, 2,3\} \ & \mathrm{C}=\{0,4,5\} \end{aligned} $

So,

$A \cap B=\{0\}$

and $\mathrm{A} \cap \mathrm{C}=\{\mathrm{O}\}$

Here, $\mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}={\mathrm{O}}$

However, $\mathrm{B} \neq \mathrm{C}$ as $2 \in \mathrm{B}$ and $2 \notin \mathrm{C}$

9. Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X$, show that $A=B$.

(Hints $A=A \cap(A \cup X), B=B \cap(B \cup X)$ and use Distributive law )

Show Answer

Answer :

Let $\mathrm{A}$ and $\mathrm{B}$ be two sets such that

$\mathrm{A} \cap \mathrm{X}=\mathrm{B} \cap \mathrm{X}=\phi$ and $\mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}$ for some set $\mathrm{X}$.

To show: $\mathrm{A}=\mathrm{B}$

It can be seen that

$ \begin{aligned} & A=A \cap(A \cup X) \\ & =A \cap(B \cup X)(A \cup X=B \cup X) \\ & =(A \cap B) \cup(A \cap X) \text { (Distributive law )} \\ & =(A \cap B) \cup \phi(\because A \cap X=\phi) \\ & =A \cap B . . . .(1) \end{aligned} $

Now, $\mathrm{B}=\mathrm{B} \cap(\mathrm{B} \cup \mathrm{X})$

$ \begin{aligned} & =\mathrm{B} \cap(\mathrm{A} \cup \mathrm{X})(\because \mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}) \\ & =(\mathrm{B} \cap \mathrm{A}) \cup(\mathrm{B} \cap \mathrm{X}) \text { (Distributive law) } \\ & =(\mathrm{B} \cap \mathrm{A}) \cup \phi(\because \mathrm{B} \cap \mathrm{X}=\phi) \\ & =\mathrm{B} \cap \mathrm{A} \\ & =\mathrm{A} \cap \mathrm{B} . . . . .(2) \end{aligned} $

Hence, from (1) and (2), we get $ \mathrm{A}=\mathrm{B} $

10. Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\phi$.

Show Answer

Answer :

Let $A=\{0,1\}, B=\{1,2\}$, and $C=\{2,0\}$.

Accordingly,

$A \cap B= \{1\}$,

$B \cap C=\{2\}$, and $A \cap C=\{0\}$.

$\therefore A \cap B, B \cap \odot C$, and $A \cap \odot C$ are non-empty.

However, $A \cap \odot B \cap \odot C=\Phi$

Summary

This chapter deals with some basic definitions and operations involving sets. These are summarised below:

A set is a well-defined collection of objects.

A set which does not contain any element is called empty set.

A set which consists of a definite number of elements is called finite set, otherwise, the set is called infinite set.

Two sets A and B are said to be equal if they have exactly the same elements.

A set A is said to be subset of a set B, if every element of A is also an element of B. Intervals are subsets of $\mathbf{R}$.

The union of two sets A and B is the set of all those elements which are either in $A$ or in $B$.

The intersection of two sets A and B is the set of all elements which are common. The difference of two sets A and B in this order is the set of elements which belong to $A$ but not to $B$.

The complement of a subset $A$ of universal set $\cup$ is the set of all elements of $\cup$ which are not the elements of $A$.

For any two sets $A$ and $B,(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Historical Note

The modern theory of sets is considered to have been originated largely by the German mathematician Georg Cantor (1845-1918). His papers on set theory appeared sometimes during 1874 to 1897 . His study of set theory came when he was studying trigonometric series of the form $a_1 \sin x+a_2 \sin 2 x+a_3 \sin 3 x+\ldots$ He published in a paper in 1874 that the set of real numbers could not be put into one-to-one correspondence wih the integers. From 1879 onwards, he publishd several papers showing various properties of abstract sets.

Cantor’s work was well received by another famous mathematician Richard Dedekind (1831-1916). But Kronecker (1810-1893) castigated him for regarding infinite set the same way as finite sets. Another German mathematician Gottlob Frege, at the turn of the century, presented the set theory as principles of logic. Till then the entire set theory was based on the assumption of the existence of the set of all sets. It was the famous Englih Philosopher Bertand Russell (18721970 ) who showed in 1902 that the assumption of existence of a set of all sets leads to a contradiction. This led to the famous Russell’s Paradox. Paul R.Halmos writes about it in his book ‘Naïve Set Theory’ that “nothing contains everything”.

The Russell’s Paradox was not the only one which arose in set theory. Many paradoxes were produced later by several mathematicians and logicians. As a consequence of all these paradoxes, the first axiomatisation of set theory was published in 1908 by Ernst Zermelo. Another one was proposed by Abraham Fraenkel in 1922. John Von Neumann in 1925 introduced explicitly the axiom of regularity. Later in 1937 Paul Bernays gave a set of more satisfactory axiomatisation. A modification of these axioms was done by Kurt Gödel in his monograph in 1940. This was known as Von Neumann-Bernays (VNB) or GödelBernays (GB) set theory.

Despite all these difficulties, Cantor’s set theory is used in present day mathematics. In fact, these days most of the concepts and results in mathematics are expressed in the set theoretic language.

  • In these days of conflict between ancient and modern studies; there must purely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but is the oldest and the youngest - G.H.HARDY

1.1 भूमिका (Introduction)

वर्तमान समय में गणित के अध्ययन में समुच्चय की परिकल्पना आधारभूत है। आजकल इस परिकल्पना का प्रयोग गणित की प्राय: सभी शाखाओं में होता है। समुच्चय का प्रयोग संबंध एवं फलन को परिभाषित करने के लिए किया जाता है। ज्यामितीय, अनुक्रम, प्रायिकता आदि के अध्ययन में समुच्चय के ज्ञान की आवश्यकता पड़ती है।

image

समुच्चय सिद्धांत का विकास जर्मन गणितज्ञ Georg Cantor (1845-1918) द्वारा किया गया था। त्रिकोणमितीय श्रेणी के प्रश्नों को सरल करते समय उनका समुच्चय से पहली बार परिचय हुआ था। इस अध्याय में हम समुच्चय से संबंधित कुछ मूलभूत परिभाषाओं और संक्रियाओं पर विचार करेंगे।

1.2 समुच्चय और उनका निरूपण (Sets and their Representations)

दैनिक जीवन में हम बहुधा वस्तुओं के संग्रह की चर्चा करते हैं, जैसे ताश की गड्डी, व्यक्तियों की भीड़, क्रिकेट टीम आदि। गणित में भी हम विभिन्न संग्रहों, की चर्चा करते हैं, उदाहरणार्थ, प्राकृत संख्याओं का संग्रह बिंदुओं का संग्रह, अभाज्य संख्याओं का संग्रह आदि। विशेषतः, हम निम्नलिखित संग्रह पर विचार करेंगे:

(i) 10 से कम विषम प्राकृत संख्याएँ, अर्थात् $1,3,5,7,9$

(ii) भारत की नदियाँ,

(iii) अंग्रेज़ी वर्णमाला के स्वर, यानी, $a, e, i, o, u$,

(iv) विभिन्न प्रकार के त्रिभुज, (v) संख्या 210 के अभाज्य गुणनखंड, अर्थात्, 2, 3, 5 तथा 7 ,

(vi) समीकरण $x^{2}-5 x+6=0$, के मूल अर्थात्, 2 तथा 3

यहाँ हम यह देखते हैं कि उपर्युक्त प्रत्येक उदाहरणों में से वस्तुओं का एक सुपरिभाषित संग्रह इस अर्थ में है कि किसी वस्तु के संबंध में हम यह निर्णय निश्चित रूप से ले सकते हैं कि वह वस्तु एक प्रदत्त संग्रह में है अथवा नहीं है। उदाहरणतः हम यह निश्चित रूप से कह सकते हैं कि ‘नील नदी’, भारत की नदियों के संग्रह में नहीं है। इसके विपरीत गंगा नदी इस संग्रह में निश्चितरूप से है।

हम नीचे ऐसे समुच्चय के कुछ और उदाहरण दे रहे हैं, जिनका प्रयोग गणित में विशेषरूप से किया जाता है;

$\mathbf{N}$ : प्राकृत संख्याओं का समुच्चय

$\mathbf{Z}$ : पूर्णांकों का समुच्चय

$\mathbf{Q}$ : परिमेय संख्याओं का समुच्चय

$\mathbf{R}$ : वास्तविक संख्याओं का समुच्चय

$\mathbf{Z}^{+}$: धन पूर्णांकों का समुच्चय

$\mathbf{Q}^{+}$: धन परिमेय संख्याओं का समुच्चय

$\mathbf{R}^{+}$: धन वास्तविक संख्याओं का समुच्चय

इन विशेष समुच्चयों के लिए निर्धारित उपर्युक्त प्रतीकों का प्रयोग हम इस पुस्तक में निरंतर करते रहेंगे।

इसके अतिरिक्त विश्व के पाँच सर्वाधिक विख्यात गणितज्ञों का संग्रह एक सुपरिभाषित समुच्चय नहीं है, क्योंकि सर्वाधिक विख्यात गणितज्ञों के निर्णय करने का मापदंड एक व्यक्ति से दूसरे व्यक्ति के लिए भिन्न-भिन्न हो सकता है। अतः यह एक सुपरिभाषित संग्रह नहीं है।

अतः ‘वस्तुओं के सुपरिभाषित संग्रह’ को हम एक समुच्चय कहते हैं। यहाँ पर हमें निम्नलिखित बिंदुओं पर ध्यान देना है:

(i) समुच्यय के लिए वस्तुएँ, अवयव तथा सदस्य पर्यायवाची पद हैं।

(ii) समुच्यय को प्रायः अंग्रेज़ी वर्णमाला के बड़े अक्षरों से निरूपित करते हैं, जैसे $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ आदि

(iii) समुच्चय के अवयवों को अंग्रेज़ी वर्णमाला के छोटे अक्षरों द्वारा प्रदर्शित करते हैं, जैसे $a$, $b, c, x, y, z$ आदि

यदि $a$, समुच्चय $\mathrm{A}$ का एक अवयव है, तो हम कहते हैं कि ’ $a$ समुच्चय $\mathrm{A}$ में है’। वाक्यांश ‘अवयव है’ ‘सदस्य है’ या ‘में है’ को सूचित करने के लिए यूनानी प्रतीक " $\in$ (epsilon)" का प्रयोग किया जाता है। अतः हम ’ $a \in \mathrm{A}$ ’ लिखते हैं। यदि $b$, समुच्चय $\mathrm{A}$ का अवयव नहीं है, तो हम ’ $b$ $\notin \mathrm{A}$ ’ लिखते हैं और इसे " $b$ समुच्चय $\mathrm{A}$ में नहीं है" पढ़ते हैं।

इस प्रकार अंग्रेज़ी वर्णमाला के स्वरों के समुच्चय $\mathrm{V}$ के सम्बंध में $a \in \mathrm{V}$ किंतु $b \notin \mathrm{V}$. इसी प्रकार संख्या 30 के अभाज्य गुणनखंडों के समुच्चय $\mathrm{P}$ के लिए, $3 \in \mathrm{P}$ किंतु $15 \notin \mathrm{P}$.

किसी समुच्चय को निरूपित करने की दो विधियाँ हैं:

(i) रोस्टर या सारणीबद्ध रूप

(ii) समुच्चय निर्माण रूप

(i) रोस्टर रूप में, समुच्चय के सभी अवयवों को सूचीबद्ध किया जाता है, अवयवों को, एक दूसरे से, अर्ध-विराम द्वारा पृथक किया जाता है और उन सभी को एक मझले कोष्ठक के भीतर लिखते हैं। उदाहरणार्थ, 7 से कम सभी सम धन पूर्णांकों के समुच्चय का वर्णन रोस्टर रूप में $\{2,4,6\}$ द्वारा किया जाता है। किसी समुच्चय को रोस्टर रूप में प्रदर्शित करने के कुछ और उदाहरण नीचे दिए हैं:

(a) संख्या 42 को विभाजित करने वाली सभी प्राकृत संख्याओं का समुच्चय $\{1,2,3,6,7,14,21,42\}$ है।

(b) अंग्रेज़ी वर्णमाला के सभी स्वरों का समुच्चय $\{a, e, i, o, u\}$ है।

(c) विषम प्राकृत संख्याओं का समुच्चय $\{1,3,5, \ldots\}$ है। अंत के बिंदु, जिनकी संख्या तीन होती है, यह बतलाते हैं कि इन विषम संख्याओं की सूची अंतहीन है।

नोट कीजिए कि रोस्टर रूप में अवयवों को सूचीबद्ध करने में उनके क्रम का महत्व नहीं होता है। इस प्रकार उपर्युक्त समुच्चय को $\{1,3,7,21,2,6,14,42\}$ प्रकार भी प्रदर्शित कर सकते हैं।

टिप्पणी यह ध्यान रखना चाहिए कि समुच्चय को रोस्टर रूप में लिखते समय किसी अवयव को सामान्यतः दोबारा नहीं लिखते हैं, अर्थात्, प्रत्येक अवयव दूसरे से भिन्न होता है। उदाहरण के लिए शब्द ‘SCHOOL’ में प्रयुक्त अक्षरों का समुच्चय $\{\mathrm{S}, \mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{L}\}$ है।

(ii) समुच्चय निर्माण रूप में, किसी समुच्चय के सभी अवयवों में एक सर्वनिष्ठ गुणधर्म होता है जो समुच्चय से बाहर के किसी अवयव में नहीं होता है। उदाहरर्णाथ समुच्चय $\{a, e, i, o, u\}$ के सभी अवयवों में एक सर्वनिष्ठ गुणधर्म है कि इनमें से प्रत्येक अवयव अंग्रेज़ी वर्णमाला का एक स्वर है और इस गुणधर्म वाला कोई अन्य अक्षर नहीं है।

इस समुच्चय को $\mathrm{V}$ से निरूपित करते हुए हम लिखते हैं कि,

$\mathrm{V}=\{x: x$ अंग्रेज़ी वर्णमाला का एक स्वर है $\}$ ।

यहाँ ध्यान देना चाहिए कि किसी समुच्चय के अवयवों का वर्णन करने के लिए हम प्रतीक ’ $x$ ’ का प्रयोग करते हैं, ( $x$ के स्थान पर किसी अन्य प्रतीक का भी प्रयोग किया जा सकता है, जैसे, अक्षर $y, z$ आदि।) जिसके उपरांत कोलन का चिह्न “:” लिखते हैं। कोलन के चिह्न के बाद समुच्चय के अवयवों के विशिष्ट गुणधर्म को लिखते हैं और फिर संपूर्ण कथन को मझले कोष्ठक \{\} के भीतर लिखते हैं। समुच्चय $\mathrm{V}$ के उपर्युक्त वर्णन को निम्नलिखित प्रकार से पढ़ा जाता है, “सभी $x$ का समुच्चय जहाँ $x$ अंग्रेज़ी वर्णमाला का एक स्वर है।”

इस वर्णन में कोष्ठक का प्रयोग “सभी $x$ का समुच्चय” के लिए और कोलन का प्रयोग “जहाँ $x^{\prime}$ के लिए किया जाता है। उदाहरण के लिए

$\mathrm{A}=\{x: x$ एक प्राकृत संख्या है और $3<x<10\}$ को निम्नलिखित प्रकार से पढ़ते हैं : “सभी $x$ का समुच्चय, जहाँ $x$ एक प्राकृत संख्या है और $x, 3$ और 10 के बीच में हैं। अतः संख्याएं $4,5,6,7,8$ और 9 समुच्चय $\mathrm{A}$ के अवयव हैं।

यदि हम ऊपर $(a),(b)$ और $(c)$ में रोस्टर रूप में वर्णित समुच्चयों को क्रमशः $\mathrm{A}, \mathrm{B}, \mathrm{C}$ से प्रकट करें, तो $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ को समुच्चय निर्माण रूप में, निम्नलिखित प्रकार से भी निरूपित किया जा सकता है।

$\mathrm{A}=\{x: x$ एक प्राकृत संख्या है जो संख्या 42 को विभाजित करती है $\}$

$\mathrm{B}=\{y: y$ अंग्रेज़ी वर्णमाला का एक स्वर है $\}$

$\mathrm{C}=\{z: z$ एक विषम प्राकृत संख्या है $\}$

उदाहरण 1 समीकरण $x^{2}+x-2=0$ का हल समुच्चय रोस्टर रूप में लिखिए।

हल प्रदत्त समीकरण इस प्रकार लिखा जा सकता है,

$$ (x-1)(x+2)=0, \text { अर्थात् } x=1,-2 $$

अतः प्रदत्त समीकरण का हल समुच्चय रोस्टर रूप में इस प्रकार लिखा जा सकता है $\{1,-2\}$.

उदाहरण 2 समुच्चय $\left\{x: x\right.$ एक धन पूर्णांक है और $\left.x^{2}<40\right\}$ को रोस्टर रूप में लिखिए।

हल $1,2,3,4,5$, और 6 अभीष्ट संख्याएँ हैं। अतः $\{1,2,3,4,5,6\}$ प्रदत्त समुच्चय का रोस्टर रूप है। उदाहरण 3 समुच्चय $\mathrm{A}=\{1,4,9,16,25, \ldots\}$ को समुच्चय निर्माण रूप में लिखिए। हल समुच्चय $\mathrm{A}$ को हम इस प्रकार लिख सकते हैं,

$$ \mathrm{A}=\{x: x \text { एक प्राकृत संख्या का वर्ग है }\} $$

विकल्पतः हम इस प्रकार भी लिख सकते हैं,

$$ \mathrm{A}=\left\{x: x=n^{2}, \text { जहाँ } n \in \mathbf{N}\right\} $$

उदाहरण 4 समुच्चय $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ को समुच्चय निर्माण रूप में लिखिए।

हल हम देखते हैं कि दिए गए समुच्चय के प्रत्येक अवयव का अंश उसके हर से 1 कम है। यह भी कि अंश एक प्राकृत संख्या है जो 1 से प्रारंभ होकर उत्तरोत्तर एक से अधिक होती जाती है और 6 से अधिक नहीं है। अतः समुच्चय निर्माण रूप में इसे इस प्रकार लिखते हैं,

$$ \left\{x: x=\frac{n}{n+1}, n \text {, एक प्राकृत संख्या है और } 1 \leq n \leq 6\right\} $$

उदाहरण 5 बाईं ओर रोस्टर रूप में वर्णित प्रत्येक समुच्चय का दाईं ओर समुच्चय निर्माण रूप में वर्णित समुच्चय से सही मिलान कीजिए:

(i) $\{\mathrm{P}, \mathrm{R}, \mathrm{I}, \mathrm{N}, \mathrm{C}, \mathrm{A}, \mathrm{L}\}$ (a) $\{x: x$ एक धन पूर्णांक है तथा 18 का भाजक है $\}$

(ii) $\{0\}$

(b) $\left\{x: x\right.$ एक पूर्णांक है और $\left.x^{2}-9=0\right\}$

(iii) $\{1,2,3,6,9,18\}$

(c) $\{x: x$ एक पूर्णांक है और $x+1=1\}$

(iv) $\{3,-3\}$

(d) $\{x: x$ शब्द PRINCIPAL का एक अक्षर है $\}$

हल चूँकि (d) में, शब्द PRINCIPAL में 9 अक्षर हैं और दो अक्षर P और I की पुनरावृत्ति हुई है, अतः (i) का सही मिलान $(d)$ से होता है। इसी प्रकार (ii) का सही मिलान $(c)$ से होता है, क्योंकि $x+1=1$ का तात्पर्य है कि $x=0$. यह भी कि, $1,2,3,6,9$ और 18 में से प्रत्येक 18 का भाजक है, इसलिए (iii) का सही मिलान $(a)$ से होता है। अंत में $x^{2}-9=0$ अर्थात् $x=3,-3$ और इसलिए (iv) का सही मिलान $(b)$ से होता है।

प्रश्नावली 1.1

1. निम्नलिखित में कौन से समुच्चय हैं? अपने उत्तर का औचित्य बताइए।

(i) $\mathrm{J}$ अक्षर से प्रारंभ होने वाले वर्ष के सभी महीनों का संग्रह।

(ii) भारत के दस सबसे अधिक प्रतिभाशाली लेखकों का संग्रह।

(iii) विश्व के सर्वश्रेष्ठ ग्यारह बल्लेवाजों का संग्रह।

(iv) आपकी कक्षा के सभी बालकों का संग्रह।

(v) 100 से कम सभी प्राकृत संख्याओं का संग्रह।

(vi) लेखक प्रेमचंद द्वारा लिखित उपन्यासों का संग्रह।

(vii) सभी सम पूर्णांकों का संग्रह।

(viii) इस अध्याय में आने वाले प्रश्नों का संग्रह।

(ix) विश्व के सबसे अधिक खतरनाक जानवरों का संग्रह।

2. मान लीजिए $\mathrm{A}=\{1,2,3,4,5,6\}$, रिक्त स्थानों में उपयुक्त प्रतीक $\in$ अथवा $\notin$ भरिए।

(i) $5 \ldots \mathrm{A}$

(ii) $8 \ldots \mathrm{A}$

(iii) $0 . \ldots \mathrm{A}$

(iv) $4 . \ldots \mathrm{A}$

(v) 2. .A

(vi) $10 . \mathrm{A}$

3. निम्नलिखित समुच्चयों को रोस्टर रूप में लिखिए:

(i) $\mathrm{A}=\{x: x$ एक पूर्णांक है और $-3<x<7\}$

(ii) $\mathrm{B}=\{x: x$ संख्या 6 से कम एक प्राकृत संख्या है $\}$

(iii) $\mathrm{C}=\{x: x$ दो अंकों की ऐसी प्राकृत संख्या है जिसके अंकों का योगफल 8 है $\}$

(iv) $\mathrm{D}=\{x: x$ एक अभाज्य संख्या है जो संख्या 60 की भाजक है $\}$

(v) $\mathrm{E}=$ TRIGONOMETRY शब्द के सभी अक्षरों का समुच्चय

(vi) $\mathrm{F}=$ BETTER शब्द के सभी अक्षरों का समुच्चय

4. निम्नलिखित समुच्चयों को समुच्चय निर्माण रूप में व्यक्त कीजिए:

(i) $(3,6,9,12\}$

(ii) $\{2,4,8,16,32\}$

(iii) $\{5,25,125,625\}$

(iv) $\{2,4,6, \ldots\}$

(v) $\{1,4,9, \ldots, 100\}$

5. निम्नलिखित समुच्चयों के सभी अवयवों (सदस्यों) को सूचीबद्ध कीजिए:

(i) $\mathrm{A}=\{x: x$ एक विषम प्राकृत संख्या है $\}$

(ii) $\mathrm{B}=\left\{x: x\right.$ एक पूर्णांक है, $\left.-\frac{1}{2}<x<\frac{9}{2}\right\}$

(iii) $\mathrm{C}=\left\{x: x\right.$ एक पूर्णांक है, $\left.x^{2} \leq 4\right\}$

(iv) $\mathrm{D}=\{x: x$, LOYAL शब्द का एक अक्षर है $\}$

(v) $\mathrm{E}=\{x: x$ वर्ष का एक ऐसा महीना है, जिसमें 31 दिन नहीं होते हैं $\}$

(vi) $\mathrm{F}=\{x: x$ अंग्रेज़ी वर्णमाला का एक व्यंजन है, जो $k$ से पहले आता है $\}$ ।

6. बाईं ओर रोस्टर रूप में लिखित और दाईं ओर समुच्चय निर्माण रूप में वर्णित समुच्चयों का सही मिलान कीजिए: (i) $\{1,2,3,6\}$ (a) $\{x: x$ एक अभाज्य संख्या है और 6 की भाजक है $\}$ (ii) $\{2,3\}$ (b) $\{x: x$ संख्या 10 से कम एक विषम प्राकृत संख्या है $\}$ (iii) $\{\mathrm{M}, \mathrm{A}, \mathrm{T}, \mathrm{H}, \mathrm{E}, \mathrm{I}, \mathrm{C}, \mathrm{S}\}$ (c) $\{x: x$ एक प्राकृत संख्या है और 6 की भाजक है $\}$ (iv) $\{1,3,5,7,9\}$ (d) $\{x: x$ MATHEMATICS शब्द का एक अक्षर है $\}$ ।

1.3 रिक्त समुच्चय (The Empty Set)

समुच्चय $\mathrm{A}=\{x: x$ किसी स्कूल की कक्षा $\mathrm{XI}$ में अध्ययनरत एक विद्यार्थी है $\}$

हम उस स्कूल में जा कर कक्षा XI में अध्ययनरत विद्यार्थियों को गिन कर उनकी संख्या ज्ञात कर सकते हैं। अतः समुच्चय $\mathrm{A}$ के अवयवयों की संख्या सीमित है।

अब नीचे लिखे समुच्चय $\mathrm{B}$ पर विचार कीजिए:

$\mathrm{B}=\{x: x$ वर्तमान में कक्षा $\mathrm{X}$ तथा $\mathrm{XI}$ दोनों में अध्ययनरत विद्यार्थी हैं $\}$

हम देखते हैं कि एक विद्यार्थी एक साथ दोनों कक्षाओं $\mathrm{X}$ तथा $\mathrm{XI}$ में अध्ययन नहीं कर सकता है। अतः समुच्चय $\mathrm{B}$ में कोई भी अवयव नहीं है।

परिभाषा 1 एक समुच्चय जिसमें एक भी अवयव नहीं होता है, रिक्त समुच्चय या शून्य समुच्चय कहलाता है। इस परिभाषा के अनुसार $\mathrm{B}$ एक रिक्त समुच्चय है जब कि $\mathrm{A}$ एक रिक्त समुच्चय नहीं है। रिक्त समुच्चय को प्रतीक $\phi$ अथवा $\{ \}$ से प्रदर्शित करते हैं।

हम नीचे रिक्त समुच्चयों के कुछ उदाहरण दे रहे हैं:

(i) मान लीजिए कि $\mathrm{A}=\{x: 1<x<2, x$ एक प्राकृत संख्या है $\}$.यहाँ $\mathrm{A}$ रिक्त समुच्चय है, क्योंकि 1 और 2 के मध्य कोई प्राकृत संख्या नहीं होती है। (ii) $\mathrm{B}=\left\{x: x^{2}-2=0\right.$ और $x$ एक परिमेय संख्या है $\}$. यहाँ $\mathrm{B}$ रिक्त समुच्चय है, क्योंकि समीकरण $x^{2}-2=0, x$ के किसी भी परिमेय मान से संतुष्ट नहीं होता है।

(iii) $\mathrm{C}=\{x: x$ संख्या 2 से अधिक एक सम अभाज्य संख्या है $\}$ तो $\mathrm{C}$ रिक्त समुच्चय है, क्योंकि केवल संख्या 2 ही सम अभाज्य संख्या है।

(iv) $\mathrm{D}=\left\{x: x^{2}=4, x\right.$ विषम है $\}$. तो $\mathrm{D}$ रिक्त समुच्चय है, क्योंकि समीकरण $x^{2}=4, x$ के किसी विषम मान से संतुष्ट नहीं होता है।

1.4 परिमित और अपरिमित समुच्चय (Finite and Infinite Sets)

मान लीजिए कि $\mathrm{A}=\{1,2,3,4,5\}, \quad \mathrm{B}=\{a, b, c, d, e, g\}$

तथा $\mathrm{C}=$ \{ इस समय विश्व के विभिन्न भागों में रहने वाले पुरुष $\}$

हम देखते हैं कि $\mathrm{A}$ में 5 अवयव हैं और $\mathrm{B}$ में 6 अवयव हैं। $\mathrm{C}$ में कितने अवयव हैं? जैसा कि स्पष्ट है कि $\mathrm{C}$ के अवयवों की संख्या हमें ज्ञात नहीं है, किंतु यह एक प्राकृत संख्या है, जो बहुत बड़ी हो सकती है। किसी समुच्चय $\mathrm{S}$ के अवयवों की संख्या से हमारा अभिप्राय समुच्चय के भिन्न अवयवों की संख्या से है और इसे हम प्रतीक $n(\mathrm{~S})$ द्वारा प्रदर्शित करते हैं। यदि $n(\mathrm{~S})$ एक प्राकृत संख्या है, तो $\mathrm{S}$ एक आरिक्त परिमित समुच्चय होता है।

आइए प्राकृत संख्याओं के समुच्चय $\mathrm{N}$ पर विचार करें। हम देखते हैं इस समुच्चय के अवयवों की संख्या सीमित नहीं है, क्योंकि प्राकृत संख्याओं की संख्या असीमित होती है। इस प्रकार हम कहते हैं कि प्राकृत संख्याओं का समुच्चय एक अपरिमित समुच्चय होता है। उपर्युक्त समुच्चय $A, B$ तथा $\mathrm{C}$ परिमित समुच्चय हैं और $n(\mathrm{~A})=5, n(\mathrm{~B})=5$ और $n(\mathrm{C})=$ कोई सीमित संख्या।

परिभाषा 2 एक समुच्चय, जो रिक्त है अथवा जिसके अवयवों की संख्या निश्चित होती है, परिमित समुच्चय कहलाता है, अन्यथा समुच्चय अपरिमित समुच्चय कहलाता है।

आइए कुछ उदाहरणों पर विचार करें:

(i) यदि $\mathrm{W}$ सप्ताह के दिनों का समुच्चय है, तो $\mathrm{W}$ परिमित है।

(ii) मान लीजिए कि $\mathrm{S}$, समीकरण $x^{2}-16=0$ के हलों का समुच्चय है, तो $\mathrm{S}$ परिमित है।

(iii) मान लीजिए कि $G$, किसी रेखा पर स्थित सभी बिंदुओं का समुच्चय है, तो $G$ अपरिमित है।

जब हम किसी समुच्चय को रोस्टर रूप में निरूपित करते हैं, तो हम उस समुच्चय के सभी अवयवों को कोष्ठक \{\} के भीतर लिखते हैं। किसी अपरिमित समुच्चय के सभी अवयवों को कोष्ठक \{ \} के भीतर लिखना संभव नहीं है, क्योंकि ऐसे समुच्चय के अवयवों की संख्या सीमित नहीं होती है। अतः हम किसी अपरिमित समुच्चय को रोस्टर रूप में प्रकट करने के लिए उसके कम से कम इतने अवयवों को लिखते है, जिससे उस समुच्चय की संरचना स्पष्ट हो सके और तदोपरांत तीन बिंदु लगाते हैं।

उदाहरणार्थ, $\{1,2,3 \ldots\}$ प्राकृत संख्याओं का समुच्चय है, $\{1,3,5,7, \ldots\}$ विषम प्राकृत संख्याओं का समुच्चय है और $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ पूर्णांकों का समुच्चय है। ये सभी समुच्चय अपरिमित हैं।

टिप्पणी सभी अपरिमित समुच्चय का वर्णन रोस्टर रूप में नहीं किया जा सकता है। उदाहरण के लिए वास्तविक संख्याओं के समुच्चय का वर्णन इस रूप में नहीं किया जा सकता है, क्योंकि इस समुच्चय के अवयवों का कोई विशेष पैटर्न (प्रतिमान) नहीं होता है।

उदाहरण 6 बतलाइए कि निम्नलिखित समुच्चयों में कौन परिमित है और कौन अपरिमित है:

(i) $\{x: x \in \mathrm{N}$ और $(x-1)(x-2)=0\}$

(ii) $\left\{x: x \in \mathrm{N}\right.$ और $\left.x^{2}=4\right\}$

(iii) $\{x: x \in \mathrm{N}$ और $2 x-1=0\}$

(iv) $\{x: x \in \mathrm{N}$ और $x$ एक अभाज्य संख्या है $\}$

(v) $\{x: x \in \mathrm{N}$ और $x$ विषम है $\}$

हल (i) प्रदत्त समुच्चय $=\{1,2\}$. अतः यह परिमित है।

(ii) प्रदत्त समुच्चय $=\{2\}$. अतः यह परिमित है।

(iii) प्रदत्त समुच्चय $=\varphi$. अत: यह परिमित है।

(iv) दिया हुआ समुच्चय सभी अभाज्य संख्याओं का समुच्चय है और क्योंकि अभाज्य संख्याओं का समुच्चय अनंत है; अतः प्रदत्त समुच्चय अपरिमित है।

(v) क्योंकि विषम प्राकृत संख्याएँ अनंत हैं, अतः प्रदत्त समुच्चय अपरिमित है।

1.5 समान समुच्चय (Equal Sets)

दो दिए गए समुच्चयों $\mathrm{A}$ और $\mathrm{B}$, में, यदि $\mathrm{A}$ का प्रत्येक अवयव $\mathrm{B}$ का भी अवयव है तथा $\mathrm{B}$ का प्रत्येक अवयव $\mathrm{A}$ का भी अवयव है, तो समुच्चय $\mathrm{A}$ और $\mathrm{B}$, समान कहलाते हैं। स्पष्टतया दोनों समुच्चयों में तथ्यतः समान अवयव होते हैं।

परिभाषा 3 दो समुच्चय $\mathrm{A}$ और $\mathrm{B}$ समान कहलाते हैं, यदि उनमें तथ्यतः समान अवयव हों और हम लिखते हैं $\mathrm{A}=\mathrm{B}$, अन्यथा समुच्चय असमान कहलाते हैं और हम लिखते हैं $\mathrm{A} \neq \mathrm{B}$.

आइए हम निम्नलिखित उदाहरणों पर विचार करें:

(i) मान लीजिए कि $\mathrm{A}=\{1,2,3,4\}$ और $\mathrm{B}=\{3,1,4,2\}$. तो $\mathrm{A}=\mathrm{B}$.

(ii) मान लीजिए कि $\mathrm{A}, 6$ से कम अभाज्य संख्याओं तथा $\mathrm{P}, 30$ के अभाज्य गुणनखंडों के समुच्चय हैं। स्पष्ट है कि समुच्चय $\mathrm{A}$ और $\mathrm{P}$ समान हैं, क्योंकि केवल 2,3 और 5 ही संख्या 30 के अभाज्य गुणनखंड हैं और 6 से कम भी हैं।

टिप्पणी यदि किसी समुच्चय के एक या एक से अधिक अवयवों की पुनरावृत्ति होती है, तो समुच्चय बदलता नहीं है। उदाहरण के लिए समुच्चय $\mathrm{A}=\{1,2,3\}$ और $\mathrm{B}=\{2,2,1,3,3\}$ समान हैं, क्योंकि $\mathrm{A}$ का प्रत्येक अवयव $\mathrm{B}$ में हैं और इसका विलोम भी सत्य है। इसी कारण हम प्रायः किसी समुच्चय का वर्णन करते समय उसके अवयवों की पुनरावृत्ति नहीं करते हैं।

उदाहरण 7 समान समुच्चयों के युग्म छाँटिए, यदि ऐसा कोई युग्म है, और कारण भी बतलाइए:

$\mathrm{A}=\{0\}$,

$\mathrm{B}=\{x: x>15$ और $x<5\}$,

$\mathrm{C}=\{x: x-5=0\}$,

$\mathrm{D}=\left\{x: x^{2}=25\right\}$,

$\mathrm{E}=\left\{x: x\right.$ समीकरण $x^{2}-2 x-15=0$ का एक धन पूर्णांक मूल है $\}$.

हल यहाँ $0 \in \mathrm{A}$ और 0 समुच्चयों $\mathrm{B}, \mathrm{C}, \mathrm{D}$ और $\mathrm{E}$, में से किसी में भी नहीं है, अत: $\mathrm{A} \neq \mathrm{B}$, $\mathrm{A} \neq \mathrm{C}, \mathrm{A} \neq \mathrm{D}, \mathrm{A} \neq \mathrm{E}$.

क्योंकि $\mathrm{B}=\phi$ किंतु और कोई समुच्चय रिक्त नहीं है।

अत: $\mathrm{B} \neq \mathrm{C}, \mathrm{B} \neq \mathrm{D}$ तथा $\mathrm{B} \neq \mathrm{E}$.

$\mathrm{C}=\{5\}$ परंतु $-5 \in \mathrm{D}$, इसलिए $\mathrm{C} \neq \mathrm{D}$

यहाँ क्योंकि $\mathrm{E}=\{5\}, \mathrm{C}=\mathrm{E}, \mathrm{D}=\{-5,5\}$ और $\mathrm{E}=\{5\}$, अत: $\mathrm{D} \neq \mathrm{E}$.

इस प्रकार समान समुच्चयों का युग्म केवल $\mathrm{C}$ तथा $\mathrm{E}$ है।

उदाहरण 8 निम्नलिखित समुच्चय युग्मों में से कौन से समान हैं? अपने उत्तर का औचित्य बताइए।

(i) X, शब्द “ALLOY” के अक्षरों का समुच्चय तथा B, शब्द “LOYAL” के अक्षरों का समुच्चय।

(ii) $\mathrm{A}=\left\{n: n \in \mathrm{Z}\right.$ तथा $\left.n^{2} \leq 4\right\}$ और $\mathrm{B}=\left\{x: x \in \mathrm{R}\right.$ तथा $\left.x^{2}-3 x+2=0\right\}$.

हल

(i) यहाँ $\mathrm{X}=\{\mathrm{A}, \mathrm{L}, \mathrm{L}, \mathrm{O}, \mathrm{Y}\}, \mathrm{B}=\{\mathrm{L}, \mathrm{O}, \mathrm{Y}, \mathrm{A}, \mathrm{L}\}$. अत: $\mathrm{X}$ और $\mathrm{B}$ समान समुच्चय हैं, क्योंकि किसी समुच्चय के अवयवों की पुनरावृत्ति से समुच्चय बदलता नहीं है। अत: $\mathrm{X}=\{\mathrm{A}, \mathrm{L}, \mathrm{O}, \mathrm{Y}\}=\mathrm{B}$

(ii) $\mathrm{A}=\{-2,-1,0,1,2\}, \mathrm{B}=\{1,2\}$. क्योंकि $0 \in \mathrm{A}$ और $0 \notin \mathrm{B}$, इसलिए $\mathrm{A}$ और $\mathrm{B}$ समान नहीं हैं।

प्रश्नावली 1.2

1. निम्नलिखित में से कौन से रिक्त समुच्चय के उदाहरण हैं?

(i) 2 से भाज्य विषम प्राकृत संख्याओं का समुच्चय।

(ii) सम अभाज्य संख्याओं का समुच्चय।

(iii) $\{x: x$ एक प्राकृत संख्या है, $x<5$ और साथ ही साथ $x>7\}$

(iv) $\{y: y$ किन्हीं भी दो समांतर रेखाओं का उभयनिष्ठ बिंदु है $\}$

2. निम्नलिखित समुच्चयों में से कौन परिमित और कौन अपरिमित हैं?

(i) वर्ष के महीनों का समुच्चय।

(ii) $\{1,2,3, \ldots\}$

(iii) $\{1,2,3, \ldots 99,100\}$

(iv) 100 से बड़े धन पूर्णांकों का समुच्चय।

(v) 99 से छोटे अभाज्य पूर्णांकों का समुच्चय।

3. निम्नलिखित समुच्चयों में से प्रत्येक के लिए बताइए कि कौन परिमित है और कौन अपरिमित है?

(i) $x$-अक्ष के समांतर रेखाओं का समुच्चय।

(ii) अंग्रेज़ी वर्णमाला के अक्षरों का समुच्चय।

(iii) उन संख्याओं का समुच्चय जो 5 के गुणज हैं।

(iv) पृथ्वी पर रहने वाले जानवरों का समुच्चय।

(v) मूल बिंदु $(0,0)$ से हो कर जाने वाले वृत्तों का समुच्चय।

4. निम्नलिखित में बतलाइए कि $\mathrm{A}=\mathrm{B}$ है अथवा नहीं है:

(i) $\mathrm{A}=\{a, b, c, d\}$ $\mathrm{B}=\{d, c, b, a\}$

(ii) $\mathrm{A}=\{4,8,12,16\}$ $\mathrm{B}=\{8,4,16,18\}$

(iii) $\mathrm{A}=\{2,4,6,8,10\}$ $\mathrm{B}=\{x: x$ सम धन पूर्णांक है और $x \leq 10\}$

(iv) $\mathrm{A}=\{x: x$ संख्या 10 का एक गुणज है $\}, \mathrm{B}=\{10,15,20,25,30, \ldots\}$

5. क्या निम्नलिखित समुच्चय युग्म समान हैं? कारण सहित बताइए।

(i) $\mathrm{A}=\{2,3\}, \quad \mathrm{B}=\left\{x: x\right.$ समीकरण $x^{2}+5 x+6=0$ का एक हल है $\}$

(ii) $\mathrm{A}=\{x: x$ शब्द ‘FOLLOW’ का एक अक्षर है $\}$ $\mathrm{B}=\{y: y$ शब्द ‘WOLF’ का एक अक्षर है $\}$

6. नीचे दिए हुए समुच्चयों में से समान समुच्चयों का चयन कीजिए:

$\mathrm{A}=\{2,4,8,12\}$,

$\mathrm{B}=\{1,2,3,4\}$,

$\mathrm{C}=\{4,8,12,14\}$,

$\mathrm{D}=\{3,1,4,2\}$

$\mathrm{E}=\{-1,1\}$

$\mathrm{F}=\{0, a\}, \quad \mathrm{G}=\{1,-1\}$, $\mathrm{H}=\{0,1\}$

1.6 उपसमुच्चय (Subsets)

नीचे दिए समुच्चयों पर विचार कीजिए:

$\mathrm{X}=$ आपके विद्यालय के सभी विद्यार्थियों का समुच्चय,

$\mathrm{Y}=$ आपकी कक्षा के सभी विद्यार्थियों का समुच्चय।

हम देखते हैं कि $\mathrm{Y}$ का प्रत्येक अवयव, $\mathrm{X}$ का भी एक अवयव है, हम कहते हैं कि $\mathrm{Y}, \mathrm{X}$ का एक उपसमुच्चय हैं $\mathrm{X}$ का एक उपसमुच्चय है, प्रतीकों में $\mathrm{X} \subset \mathrm{Y}$ द्वारा प्रकट करते हैं। प्रतीक $\subset$, कथन ‘एक उपसमुच्चय है’, अथवा ‘अंतर्विष्ट है’ के लिए प्रयुक्त होता है।

परिभाषा 4 यदि समुच्चय $A$ का प्रत्येक अवयव, समुच्चय $B$ का भी एक अवयव है, तो $A, B$ का उपसमुच्चय कहलाता है।

दूसरे शब्दों में, $\mathrm{A} \subset \mathrm{B}$, यदि जब कभी $a \in \mathrm{A}$, तो $a \in \mathrm{B}$. बहुधा प्रतीक ’ $\Rightarrow$ ‘, जिसका अर्थ ’ तात्पर्य है’ होता है, का प्रयोग सुविधाजनक होता है। इस प्रतीक का प्रयोग कर के, हम उपसमुच्चय की परिभाषा इस प्रकार लिख सकते हैं:

$$ \mathrm{A} \subset \mathrm{B} \text {, यदि } a \in \mathrm{A} \Rightarrow a \in \mathrm{B} $$

हम उपर्युक्त कथन को इस प्रकार पढ़ते हैं, " $\mathrm{A}, \mathrm{B}$ का एक उपसमुच्चय है, यदि इस तथ्य का, कि $a, \mathrm{~A}$ का एक अवयव है तात्पर्य है कि $a, \mathrm{~B}$ का भी एक अवयव है”। यदि $\mathrm{A}, \mathrm{B}$ का एक उपसमुच्चय नहीं है, तो हम लिखते हैं कि $\mathrm{A} \not \subset \mathrm{B}$ ।

हमें ध्यान देना चाहिए कि $\mathrm{A}$ को $\mathrm{B}$, का समुच्चय होने के लिए केवल मात्र यह आवश्यक है कि $\mathrm{A}$ का प्रत्येक अवयव $\mathrm{B}$ में है। यह संभव है कि $\mathrm{B}$ का प्रत्येक अवयव $\mathrm{A}$ में हो या न हो। यदि ऐसा होता है कि $\mathrm{B}$ का प्रत्येक अवयव $\mathrm{A}$ में भी है, तो $\mathrm{B} \subset \mathrm{A}$. इस दशा में, $\mathrm{A}$ और $\mathrm{B}$ समान समुच्चय हैं और इस प्रकार $\mathrm{A} \subset \mathrm{B}$ और $\mathrm{B} \subset \mathrm{A} \Leftrightarrow \mathrm{A}=\mathrm{B}$, जहाँ ’ $\Leftrightarrow$ ’ द्विधा तात्पर्य (two way implications) के लिए प्रतीक है और जिसे प्राय: ‘यदि और केवल यदि’ पढ़ते हैं तथा संक्षेप में ‘iff’ लिखते हैं।

परिभाषा से निष्कर्ष निकलता है कि प्रत्येक समुच्चय स्वयम् का उपसमुच्चय है, अर्थात् $\mathrm{A} \subset \mathrm{A}$ । चूँकि रिक्त समुच्चय $\phi$ में कोई अवयव नहीं होता है अतः हम इस बात से सहमत हैं कि $\phi$ प्रत्येक समुच्चय का एक उपसमुच्चय है। अब हम कुछ उदाहरणों पर विचार करते हैं:

(i) परिमेय संख्याओं का समुच्चय $\mathbf{Q}$, वास्तविक संख्याओं के समुच्चय $\mathbf{R}$ का एक उपसमुच्चय है और हम लिखते हैं कि $\mathbf{Q} \subset \mathrm{R}$.

(ii) यदि $\mathrm{A}$, संख्या 56 के सभी भाजकों का समुच्चय है और $\mathrm{B}$, संख्या 56 के सभी अभाज्य भाजकों का समुच्चय है, तो $\mathrm{B}, \mathrm{A}$ का एक उपसमुच्चय है और हम लिखते हैं कि $\mathrm{B}$ $\subset \mathrm{A}$.

(iii) मान लीजिए कि $\mathrm{A}=\{1,3,5\}$ और $\mathrm{B}=\{x: x$ संख्या 6 से कम एक विषम प्राकृत संख्या है $\}$ तो $\mathrm{A} \subset \mathrm{B}$ तथा $\mathrm{B} \subset \mathrm{A}$, अत: $\mathrm{A}=\mathrm{B}$

(iv) मान लीजिए कि $\mathrm{A}=\{a, e, i, o, u\}$ और $\mathrm{B}=\{a, b, c, d\}$. तो $\mathrm{A}, \mathrm{B}$ का एक उपसमुच्चय नहीं है तथा $\mathrm{B}$ भी $\mathrm{A}$ का उपसमुच्चय नहीं है।

मान लीजिए कि $A$ और $B$ दो समुच्चय हैं। यदि $A \subset B$ तथा $A \neq B$, तो $A, B$ का उचित उपसमुच्चय कहलाता है और $\mathrm{B}, \mathrm{A}$ का अधिसमुच्चय कहलाता है। उदाहरणार्थ,-

$\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{1,2,3,4\}$ का एक उचित उपसमुच्चय है।

यदि समुच्चय $\mathrm{A}$ में केवल एक अवयव हो, तो हम इसे एक एकल समुच्चय कहते हैं। अतः $\{a\}$ एक एकल समुच्चय है।

उदाहरण 9 नीचे लिखे समुच्चयों पर विचार कीजिए:

$$ \phi, \mathrm{A}=\{1,3\}, \mathrm{B}=\{1,5,9\}, \mathrm{C}=\{1,3,5,7,9\} . $$

प्रत्येक समुच्चय युग्म के बीच सही प्रतीक $\subset$ अथवा $\not \subset$ भरिए; (i) $\phi \ldots B$ (ii) $\mathrm{A} \ldots \mathrm{B}$ (iii) $\mathrm{A} \ldots \mathrm{C}$ (iv) $\mathrm{B} \ldots \mathrm{C}$

हल (i) $\phi \subset \mathrm{B}$, क्योंकि $\phi$ प्रत्येक समुच्चय का उपसमुच्चय होता है।

(ii) $\mathrm{A} \not \subset \mathrm{B}$ क्योंकि $3 \in \mathrm{A}$ और $3 \notin \mathrm{B}$

(iii) $\mathrm{A} \subset \mathrm{C}$ क्योंकि $1,3 \in \mathrm{A}$ तथा $1,3 \in \mathrm{C}$

(iv) $\mathrm{B} \subset \mathrm{C}$ क्योंकि $\mathrm{B}$ का प्रत्येक अवयव $\mathrm{C}$ में भी है।

उदाहरण 10 मान लीजिए $\mathrm{A}=\{a, e, i, o, u\}, \mathrm{B}=\{a, b, c, d\}$. क्या $\mathrm{A}, \mathrm{B}$ का एक उपसमुच्चय है? नहीं (क्यों?)। क्या $\mathrm{A}, \mathrm{B}$ का उप समुच्चय हैं? नहीं (क्यों?)

उदाहरण 11 मान लीजिए $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ तीन समुच्चय हैं। यदि $\mathrm{A} \in \mathrm{B}$ तथा $\mathrm{B} \subset \mathrm{C}$, तो क्या यह सत्य है कि $\mathrm{A} \subset \mathrm{C}$ ? यदि नहीं तो एक उदाहरण दीजिए।

हल मान लीजिए कि $\mathrm{A}=\{1\}, \mathrm{B}=\{\{1\}, 2\}$ और $\mathrm{C}=\{\{1\}, 2,3\}$ स्पष्टतया यहाँ $\mathrm{A} \in \mathrm{B}$ क्योंकि $\mathrm{A}=\{1)$ तथा $\mathrm{B} \subset \mathrm{C}$ सत्य है। परंतु $\mathrm{A} \not \subset \mathrm{C}$ क्योंकि $1 \in \mathrm{A}$ और $1 \notin \mathrm{C}$. नोट कीजिए कि किसी समुच्चय का एक अवयव उस समुच्चय का उपसमुच्चय नहीं हो सकता है।

1.6.1 वास्तविक संख्याओं के समुच्चय के उपसमुच्चय

जैसा कि अनुच्छेद 1.6 से स्पष्ट होता है कि समुच्चय $\mathbf{R}$ के बहुत से महत्वपूर्ण उपसमुच्चय हैं। इनमें से कुछ के नाम हम नीचे दे रहे हैं:

प्राकृत सख्याओं का समुच्चय $\mathbf{N}=\{1,2,3,4,5, \ldots\}$

पूर्णांकों का समुच्चय $\quad \mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

परिमेय संख्याओं का समुच्चय $\mathbf{Q}=\left\{x: x=\frac{p}{q}, p, q \in \mathbf{Z}\right.$ तथा $\left.q \neq 0\right\}$, जिनको इस प्रकार पढ़ते हैं:

" $\mathrm{Q}$ उन सभी संख्याओं $x$ का समुच्चय इस प्रकार है, कि $x$ भागफल $\frac{p}{q}$, के बराबर है, जहाँ $p$ और $q$ पूर्णांक है और $q$ शून्य नहीं है।” $\mathrm{Q}$ के अवयवों में -5 (जिसे $-\frac{5}{1}$ से भी प्रदर्शित किया जा सकता है), $\frac{5}{7}, 3 \frac{1}{2}$ (जिसे $\frac{7}{2}$ से भी प्रदर्शित किया जा सकता है) और $-\frac{11}{3}$ आदि सम्मिलित हैं।

अपरिमेय संख्याओं का समुच्चय, जिसे $\mathbf{T}$, से निरूपित करते हैं, शेष अन्य वास्तविक संख्याओं (परिमेय संख्याओं को छोड़कर) से मिलकर बनता है।

अतः $\mathbf{T}=\{x: x \in \mathbf{R}$ और $x \notin \mathbf{Q}\}=\mathbf{R}-\mathbf{Q}$ अर्थात् वह सभी वास्तविक संख्याएँ जो परिमेय नहीं है। $\mathbf{T}$ के सदस्यों में $\sqrt{2}, \sqrt{5}$ और $\pi$ आदि सम्मिलित हैं।

इन समुच्चयों के मध्य कुछ स्पष्ट संबंध इस प्रकार हैं;

$\mathbf{N} \subset \mathbf{Z} \subset \mathbf{Q}, \mathbf{Q} \subset \mathbf{R}, \mathbf{T} \subset \mathbf{R}, \mathbf{N} \not \subset \mathbf{T}$.

1.6.2 अंतराल $\mathbb{R}$ के उपसमुच्चय के रूप में (Interval as subsets of $\mathbb{R}$ )

मान लीजिए कि $a, b \in \mathbf{R}$ और $a<b$. तब वास्तविक संख्याओं का समुच्चय $\{y: a<y<b\}$ एक विवृत अंतराल कहलाता है और प्रतीक $(a, b)$ द्वारा निरूपित होता है। $a$ और $b$ के बीच स्थित सभी बिंदु इस अंतराल में होते हैं परंतु $a$ और $b$ स्वयं इस अंतराल में नहीं होते हैं।

वह अंतराल जिसमें अंत्य बिंदु भी होते हैं, संवृत (बंद) अंतराल कहलाता है और प्रतीक $[a, b]$ द्वारा निरूपित होता है। अत: $[a, b]=\{x: a \leq x \leq b\}$

ऐसे अंतराल भी हैं जो एक अंत्य बिंदु पर बंद और दूसरे पर खुले होते हैं

$[a, b)=\{x: a \leq x<b\}, a$ से $b$, तक एक खुला अंतराल है, जिसमें $a$ अंतर्विष्ट है किंतु $b$ अपवर्जित है।

$(a, b]=\{x: a<x \leq b\} a$ से $b$, तक एक खुला अंतराल है, जिसमें $b$ सम्मिलित है किंतु $a$ अपवर्जित है।

इन संकेतों द्वारा वास्तविक संख्याओं के समुच्चय के उपसमुच्चयों के उल्लेख करने की एक वैकल्पिक विधि मिलती है। उदाहरण के लिए, यदि $\mathrm{A}=(-3,5)$ और $\mathrm{B}=[-7,9]$, तो $\mathrm{A} \subset \mathrm{B}$. समुच्चय $[0, \infty)$ ॠणेतर वास्तविक संख्याओं के समुच्चय को दर्शाता है, जबकि $(-\infty, 0)$ ॠण वास्तविक संख्याओं के समुच्चय को दर्शाता है। $(-\infty, \infty),-\infty$ से $\infty$ तक विस्तृत रेखा से संबंधित वास्तविक संख्याओं के समुच्चय को प्रदर्शित करता है।

वास्तविक रेखा पर $\mathbf{R}$ के उपसमुच्चयों के रूप में वर्णित उपर्युक्त अंतरालों को आकृति 1.1 में दर्शाया गया है:

आकृति 1.1

यहाँ हम ध्यान देते हैं कि एक अंतराल में असंख्य असीम मात्रा में अनेक बिंदु होते हैं। उदाहरणार्थ, समुच्चय समुच्चय $\{x: x \in \mathbf{R}:-5<x \leq 7\}$ को अंतराल $(-5,7]$ रूप में लिख सकते हैं तथा अंतराल $[-3,5)$ को समुच्चय निर्माण रूप में $\{x:-3 \leq x<5\}$ द्वारा लिख सकते हैं। संख्या $(b-a)$ को अंतराल $(a, b),[a, b],[a, b)$ तथा $(a, b]$ में से किसी की भी लंबाई कहते हैं।

1.7 सार्वत्रिक समुच्चय (Universal Set)

सामान्यतः किसी विशेष संदर्भ में हमें एक आधारभूत समुच्चय के अवयवों और उपसमुच्चयों पर विचार करना पड़ता है, जो कि उस विशेष संदर्भ में प्रासंगिक होते हैं। उदाहरण के लिए, संख्या-प्रणाली का अध्ययन करते समय हमें प्राकृत संख्याओं के समुच्चय और उसके उपसमुच्चयों में रुचि होती है, जैसे अभाज्य संख्याओं का समुच्चय, सम संख्याओं का समुच्चय इत्यादि। यह आधारभूत समुच्चय ‘सार्वत्रिक समुच्चय’ कहलाता है। सार्वत्रिक समुच्चय को सामान्यतः प्रतीक $U$ से निरूपित करते हैं और इसके उपसमुच्चयों को अक्षर $\mathrm{A}, \mathrm{B}, \mathrm{C}$, आदि द्वारा।

उदाहरणार्थ, पूर्णांकों के समुच्चय $\mathrm{Z}$ के लिए, परिमेय संख्याओं का समुच्चय $\mathrm{Q}$, एक सार्वत्रिक समुच्चय हो सकता है, या वास्तविक संख्याओं का समुच्चय $\mathbf{R}$ भी एक सार्वत्रिक समुच्चय हो सकता है। एक अन्य उदाहरण में मानव जनसंख्या अध्ययन के लिए विश्व के समस्त मानव का समुच्चय, सार्वत्रिक समुच्चय होगा।

प्रश्नावली 1.3

1. रिक्त स्थानों में प्रतीक $\subset$ या $\not \subset$ को भर कर सही कथन बनाइए:

(i) $\{2,3,4\}$ … $\{1,2,3,4,5\}$

(ii) $\{a, b, c\}$ … $\{b, c, d\}$

(iii) $\{x: x$ आपके विद्यालय की कक्षा XI का एक विद्यार्थी है $\} \ldots\{x: x$ आपके विद्यालय का एक विद्यार्थी है $\}$

(iv) $\{x: x$ किसी समतल में स्थित एक वृत्त है $\} \ldots\{x: x$ एक समान समतल में वृत्त है जिसकी त्रिज्या 1 इकाई है। $\}$

(v) $\{x: x$ किसी समतल में स्थित एक त्रिभुज है $\} \ldots\{x: x$ किसी समतल में स्थित एक आयत है $\}$

(vi) $\{x: x$ किसी समतल में स्थित एक समबाहु त्रिभुज है $\} \ldots\{x: x$ किसी समतल में स्थित एक त्रिभुज है $\}$

(vii) $\{x: x$ एक सम प्राकृत संख्या है $\} \ldots\{x: x$ एक पूर्णांक है $\}$

2. जाँचिए कि निम्नलिखित कथन सत्य हैं अथवा असत्य हैं:

(i) $\{a, b\} \not \subset\{b, c, a\}$

(ii) $\{a, e\} \subset\{x: x$ अंग्रेज़ी वर्णमाला का एक स्वर है $\}$

(iii) $\{1,2,3\} \subset\{1,3,5\}$

(iv) $\{a\} \subset\{a, b, c\}$

(v) $\{a\} \in\{a, b, c\}$

(vi) $\{x: x$ संख्या 6 से कम एक सम प्राकृत संख्या है $\} \subset\{x: x$ एक प्राकृत संख्या है, जो संख्या 36 को विभाजित करती है $\}$

3. मान लीजिए कि $\mathrm{A}=\{1,2,\{3,4\}, 5\}$ । निम्नलिखित में से कौन सा कथन सही नहीं है और क्यों?

(i) $\{3,4\} \subset A$

(ii) $\{3,4\} \in \mathrm{A}$

(iii) $\{\{3,4\}\} \subset \mathrm{A}$

(iv) $1 \in \mathrm{A}$

(v) $1 \subset \mathrm{A}$ (vi) $\{1,2,5\} \subset \mathrm{A}$

(vii) $\{1,2,5\} \in \mathrm{A}$

(viii) $\{1,2,3\} \subset A$

(ix) $\phi \in \mathrm{A}$

(x) $\phi \subset \mathrm{A}$

(xi) $\{\phi\} \subset \mathrm{A}$

4. निम्नलिखित समुच्चयों के सभी उपसमुच्चय लिखिए:

(i) $\{a\}$

(ii) $\{a, b\}$

(iii) $\{1,2,3\}$

(iv) $\phi$

5. निम्नलिखित को अंतराल रूप में लिखिए:

(i) $\{x: x \in \mathrm{R},-4<x \leq 6\}$

(ii) $\{x: x \in \mathrm{R},-12<x<-10\}$

(iii) $\{x: x \in \mathrm{R}, 0 \leq x<7\}$

(iv) $\{x: x \in \mathrm{R}, 3 \leq x \leq 4\}$

6. निम्नलिखित अंतरालों को समुच्चय निर्माण रूप में लिखिए:

(i) $(-3,0)$

(ii) $[6,12]$

(iii) $(6,12]$

(iv) $[-23,5)$

7. निम्नलिखित में से प्रत्येक के लिए आप कौन-सा सार्वत्रिक समुच्चय प्रस्तावित करेंगे?

(i) समकोण त्रिभुजों का समुच्चय।

(ii) समद्विबाहु त्रिभुजों का समुच्चय।

8. समुच्चय $\mathrm{A}=\{1,3,5\}, \mathrm{B}=\{2,4,6\}$ और $\mathrm{C}=\{0,2,4,6,8\}$ प्रदत्त हैं। इन तीनों समुच्चय $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ के लिए निम्नलिखित में से कौन सा (से) सार्वत्रिक समुच्चय लिए जा सकते हैं?

(i) $\{0,1,2,3,4,5,6\}$

(ii) $\phi$

(iii) $\{0,1,2,3,4,5,6,7,8,9,10\}$

(iv) $\{1,2,3,4,5,6,7,8\}$

1.8 वेन आरेख (Venn Diagrams)

समुच्चयों के बीच अधिकांश संबंधों को आरेखों द्वारा निरूपित किया जा सकता है जिन्हें वेन आरेख कहते हैं। वेन आरेख का नाम अंग्रेज तर्कशास्त्री John Venn ( 1834 ई०- 1883 ई०) के नाम पर रखा गया है। इन आरेखों में आयत और बंद वक्र सामान्यतः वृत्त होते हैं। किसी सार्वत्रिक समुच्चय को प्राय: एक आयत द्वारा और उसके उपसमुच्चयों को एक वृत्त द्वारा प्रदर्शित करते हैं।

किसी वेन आरेख में समुच्चयों के अवयवों को उनके विशेष समुच्चय में लिखा जाता है जैसे आकृति 1.2 और 1.3 में

आकृति 1.2

आकृति 1.3

दृष्टांत 1 आकृति 1.2 में, $\mathrm{U}=\{1,2,3, \ldots, 10\}$ एक सार्वत्रिक समुच्चय है और $\mathrm{A}=\{2,4,6,8,10\}$ उसका एक उपसमुच्चय है,

दृष्टांत 2 आकृति 1.3 में, $\mathrm{U}=\{1,2,3, \ldots, 10\}$ एक सार्वत्रिक समुच्चय है, जिसके $\mathrm{A}=\{2,4,6,8,10\}$ और $\mathrm{B}=\{4,6\}$ उपसमुच्चय हैं और $\mathrm{B} \subset \mathrm{A}$.

पाठक वेन आरेखों का विस्तृत प्रयोग देखेंगे जब हम समुच्चयों के सम्मिलन, सर्वनिष्ठ और अंतर पर विचार करेंगे।

1.9 समुच्चयों पर संक्रियाएँ (Operations on Sets)

पिछली कक्षाओं में हम सीख चुके हैं कि संख्याओं पर योग, अंतर, गुणा और भाग की संक्रियाएँ किस प्रकार संपन्न की जाती हैं। इनमें से प्रत्येक संक्रिया को दो संख्याओं पर संपन्न किया गया था, जिससे एक अन्य संख्या प्राप्त हुई थी। उदाहरण के लिए दो संख्याओं 5 और 13 पर योग की संक्रिया संपन्न करने से हमें संख्या 18 प्राप्त होती है। पुनः संख्याओं 5 और 13 पर गुणा की संक्रिया संपन्न करने पर हमें संख्या 65 प्राप्त होती है। इसी प्रकार, कुछ ऐसी संक्रियाएँ है, जिनको दो समुच्चयों पर संपन्न करने से, एक अन्य समुच्चय बन जाता है। अब हम समुच्चयों पर होने वाली कुछ संक्रियाओं को परिभाषित करेंगे और उनके गुणधर्मों की जाँच करेंगे। यहाँ से आगे हम समुच्चयों का उल्लेख किसी सार्वत्रिक समुच्चय के उपसमुच्चयों के रूप में करेंगे।

1.9.1 समुच्चयों का सम्मिलन (Union of sets)

मान लीजिए कि $\mathrm{A}$ और $\mathrm{B}$ कोई दो समुच्चय हैं। $\mathrm{A}$ और $\mathrm{B}$ का सम्मिलन वह समुच्चय है जिसमें $\mathrm{A}$ के सभी अवयवों के साथ $\mathrm{B}$ के भी सभी अवयव हों, तथा उभयनिष्ठ अवयवों को केवल एक बार लिया गया हो। प्रतीक ’ $\cup$ ’ का प्रयोग सम्मिलन को निरूपित करने के लिए किया जाता है। प्रतीकात्मक रूप में हम $\mathrm{A} \cup \mathrm{B}$ लिखते हैं और इसे ’ $\mathrm{A}$ सम्मिलन B’ पढ़ते हैं।

उदाहरण 12 मान लीजिए कि $\mathrm{A}=\{2,4,6,8\}$ और $\mathrm{B}=\{6,8,10,12\} . \mathrm{A} \cup \mathrm{B}$ ज्ञात कीजिए। हल हम देखते हैं कि $\mathrm{A} \cup \mathrm{B}=\{2,4,6,8,10,12\}$

नोट कीजिए कि $\mathrm{A} \cup \mathrm{B}$ लिखते समय उभयनिष्ठ अवयव 6 और 8 को केवल एक बार लिखते हैं।

उदाहरण 13 मान लीजिए कि $\mathrm{A}=\{a, e, i, o, u\}$ और $\mathrm{B}=\{a, i, u\}$. दर्शाइए कि $\mathrm{A} \cup \mathrm{B}=\mathrm{A}$.

हल स्पष्टतया $\mathrm{A} \cup \mathrm{B}=\{a, e, i, o, u\}=\mathrm{A}$.

इस उदाहरण से स्पष्ट होता है कि किसी समुच्चय $\mathrm{A}$ और उसके उपसमुच्चय $\mathrm{B}$ का सम्मिलन समुच्चय $\mathrm{A}$ स्वयं होता है, अर्थात् यदि $\mathrm{B} \subset \mathrm{A}$, तो $\mathrm{A} \cup \mathrm{B}=\mathrm{A}$.

उदाहरण 14 मान लीजिए कि $\mathrm{X}=\{$ राम, गीता, अकबर $\}$ कक्षा $\mathrm{XI}$ के विद्यार्थियों का जो विद्यालय की हाकी टीम में हैं, एक समुच्चय है। मान लीजिए कि $\mathrm{Y}=\{$ गीता, डेविड, अशोक $\}$ कक्षा $\mathrm{XI}$ के

विद्यार्थियों का, जो विद्यालय की फुटबाल टीम में हैं, एक समुच्चय है। X U Y ज्ञात कीजिए और इस समुच्चय की व्याख्या कीजिए।

हल यहाँ $\mathrm{X} \cup \mathrm{Y}=\{$ राम, गीता, अकबर, डेविड, अशोक $\}$. यह कक्षा XI के उन विद्यार्थियों का समुच्चय है, जो या तो विद्यालय की हाकी टीम में हैं या फुटबाल टीम में हैं या दोनों टीमों में हैं। अतः हम दो समुच्चयों के सम्मिलन की परिभाषा इस प्रकार कर सकते हैं:

परिभाषा 5 दो समुच्चयों $\mathrm{A}$ और $\mathrm{B}$ का सम्मिलन समुच्चय, वह समुच्चय है जिसमें वे सभी अवयव हैं, जो या तो $\mathrm{A}$ में हैं या $\mathrm{B}$ में हैं (उन अवयवों को सम्मिलित करते हुए जो दोनों में हैं)। प्रतीकात्मक रूप में हम लिखते हैं कि $\mathrm{A} \cup \mathrm{B}=\{x: x \in \mathrm{A}$ या $x \in \mathrm{B}\}$ है।

दो समुच्चयों के सम्मिलन को आकृति 1.4 में दिखाए गए वेन आरेख से प्रदर्शित किया जा सकता है। करता है।

आकृति 1.4 में छायांकित भाग $\mathrm{A} \cup \mathrm{B}$ को प्रदर्शित सम्मिलन की संक्रिया के कुछ गुणधर्म:

आकृति 1.4

(i) $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ (क्रम विनिमय नियम)

(ii) $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (साहचर्य नियम)

(iii) $\mathrm{A} \cup \varphi=\mathrm{A}$ (तत्समक नियम, $\varphi$ संक्रिया $\cup$ का तत्समक अवयव है)

(iv) $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ (वर्गसम नियम)

(v) $\mathrm{U} \cup \mathrm{A}=\mathrm{U}$ (U का नियम)

1.9.2 समुच्चयों का सर्वनिष्ठ (Intersection of sets)

समुच्चय A और B का सर्वनिष्ठ उन सभी अवयवों का समुच्चय है, जो $A$ और $B$ दोनों में उभयनिष्ठ है। प्रतीक ’ $n$ ’ का प्रयोग सर्वनिष्ठ को निरूपित करने के लिए किया जाता है। समुच्चय $\mathrm{A}$ और $\mathrm{B}$ का सर्वनिष्ठ उन सभी अवयवों का समुच्चय है, जो $\mathrm{A}$ और $\mathrm{B}$ दोनों में हों। प्रतीकात्मक रूप में हम लिखते हैं कि

$\mathrm{A} \cap \mathrm{B}=\{x: x \in \mathrm{A}$ और $x \in \mathrm{B}\}$

उदाहरण 15 उदाहरण 12 के समुच्चय $\mathrm{A}$ और $\mathrm{B}$ पर विचार कीजिए। $\mathrm{A} \cap \mathrm{B}$ ज्ञात कीजिए।

हल हम देखते हैं कि केवल 6 और 8 ही ऐसे अवयव हैं जो $\mathrm{A}$ और $\mathrm{B}$ दोनों में उभयनिष्ठ हैं। अतः $\mathrm{A} \cap \mathrm{B}=\{6,8\}$

उदाहरण 16 उदाहरण 14 के समुच्चय $\mathrm{X}$ और $\mathrm{Y}$ पर विचार कीजिए। $\mathrm{X} \cap \mathrm{Y}$ ज्ञात कीजिए।

हल हम देखते हैं केवल ‘गीता’ ही एक मात्र ऐसा अवयव है, जो दोनों में उभयनिष्ठ है। अतः $\mathrm{X} \cap \mathrm{Y}=\{$ गीता $\}$

उदाहरण 17 मान लीजिए कि $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,10\}$ और $\mathrm{B}=\{2,3,5,7\}$ $\mathrm{A} \cap \mathrm{B}$ ज्ञात कीजिए और इस प्रकार दिखाइए कि $\mathrm{A} \cap \mathrm{B}=\mathrm{B}$.

हल हम देखते हैं कि $\mathrm{A} \cap \mathrm{B}=\{2,3,5,7\}=\mathrm{B}$ हम ध्यान देते हैं कि $\mathrm{B} \subset \mathrm{A}$ और $\mathrm{A} \cap \mathrm{B}=\mathrm{B}$ परिभाषा 6 समुच्चय $\mathrm{A}$ और $\mathrm{B}$ का सर्वनिष्ठ उन सभी अवयवों का समुच्चय है, जो $\mathrm{A}$ और $\mathrm{B}$ दोनों में हो। प्रतीकात्मक रूप में, हम लिखते हैं कि

$$ \mathrm{A} \cap \mathrm{B}=\{x: x \in \mathrm{A} \text { और } x \in \mathrm{B}\} $$

आकृति 1.5 में छायांकित भाग, $\mathrm{A}$ और $\mathrm{B}$ के सर्वनिष्ठ को प्रदर्शित करता है।

यदि $\mathrm{A}$ और $\mathrm{B}$ ऐसे दो समुच्चय हों कि $\mathrm{A} \cap \mathrm{B}=$ $\varphi$, तो $\mathrm{A}$ और $\mathrm{B}$ असंयुक्त समुच्चय कहलाते हैं। उदाहरण के लिए मान लीजिए कि $\mathrm{A}=\{2,4,6,8\}$ और

$\mathrm{B}=\{1,3,5,7\}$, तो $\mathrm{A}$ और $\mathrm{B}$ असंयुक्त समुच्चय हैं, क्योंकि $\mathrm{A}$ और $\mathrm{B}$ में कोई भी अवयव उभयनिष्ठ नहीं है। असंयुक्त समुच्चयों को वेन आरेख द्वारा निरूपित किया जा सकता है, जैसा आकृति 1.6 में प्रदर्शित है। उपर्युक्त आरेख में $\mathrm{A}$ और $\mathrm{B}$ असंयुक्त समुच्चय हैं।

सर्वनिष्ठ संक्रिय के कुछ गुणधर्म

(i) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$

(ii) $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$

आकृति 1.6

(क्रम विनिमय नियम)

(साहचर्य नियम)

( $\varphi$ और $U$ के नियम)।

(वर्गसम नियम)

(वितरण या बंटन नियम) अर्थात् $\cap$ वितरित होता है $U$ पर।

नीचे बने वेन आरेखों [आकृतियों 1.7 (i)-(v)] द्वारा इस बात को सरलता से देख सकते हैं।

(i) $(B \cup C)$

(iii) $(\mathbf{A} \cap \mathbf{B})$

(ii) $\mathbf{A} \cap(\mathbf{B} \cup \mathbf{C})$

(iv) $(\mathrm{A} \cap \mathrm{C})$

(v) $(A \cap B) \cup(A \cap C)$

आकृतियाँ 1.7 (i) से (v)

1.9.3 समुच्चयों का अंतर (Difference of sets)

समुच्चयों $\mathrm{A}$ और $\mathrm{B}$ का अंतर उन अवयवों का समुच्चय है जो $\mathrm{A}$ में हैं किंतु $\mathrm{B}$ में नहीं हैं, जब कि $\mathrm{A}$ और $\mathrm{B}$ को इसी क्रम में लिया जाए। प्रतीतात्मक रूप में इसे $\mathrm{A}-\mathrm{B}$ लिखते हैं और “ $\mathrm{A}$ अंतर $\mathrm{B}$ " पढ़ते हैं।

उदाहरण 18 मान लीजिए कि $\mathrm{A}=\{1,2,3,4,5,6\}, \mathrm{B}=\{2,4,6,8\} \mathrm{A}-\mathrm{B}$ और $\mathrm{B}-\mathrm{A}$ ज्ञात कीजिए ।

हल हम प्राप्त करते हैं कि, $\mathrm{A}-\mathrm{B}=\{1,3,5\}$, क्योंकि अवयव $1,3,5$ समुच्चय $\mathrm{A}$ में हैं किंतु $\mathrm{B}$ में नहीं हैं तथा $\mathrm{B}-\mathrm{A}=\{8\}$, क्योंकि अवयव $8, \mathrm{~B}$ में है किंतु $\mathrm{A}$ में नहीं है। हम देखते हैं कि $\mathrm{A}-\mathrm{B} \neq \mathrm{B}-\mathrm{A}$

उदाहरण 19 मान लीजिए कि $\mathrm{V}=\{a, e, i, o, u\}$ तो $\mathrm{B}=\{a, i, k, u\}$, तो $\mathrm{V}-\mathrm{B}$ और $\mathrm{B}-\mathrm{V}$ ज्ञात कीजिए।

हल यहाँ, $\mathrm{V}-\mathrm{B}=\{e, o\}$, क्योंकि अवयव $e, o$ समुच्चय $\mathrm{V}$ में हैं किंतु $\mathrm{B}$ में नहीं है तथा $\mathrm{B}-\mathrm{V}=\{k\}$, क्योंकि अवयव $k$ समुच्चय $\mathrm{B}$ में है परंतु $\mathrm{V}$ में नहीं है।

हम नोट करते हैं कि $\mathrm{V}-\mathrm{B} \neq \mathrm{B}-\mathrm{V}$ समुच्चय निर्माण संकेतन का प्रयोग करते हुए हम समुच्चयों के अंतर की परिभाषा को पुनः इस प्रकार लिख सकते हैं:

$$ \mathrm{A}-\mathrm{B}=\{x: x \in \mathrm{A} \text { और } x \notin \mathrm{B}\} $$

आकृति 1.8

दो समुच्चयों $\mathrm{A}$ और $\mathrm{B}$ के अंतर को वेन आरेख द्वारा दर्शाया जा सकता है जैसा कि आकृति 1.8 में प्रदर्शित है। छायांकित भाग दो समुच्चय $\mathrm{A}$ और $\mathrm{B}$ के अंतर को दर्शाता है।

टिप्पणी समुच्चय $\mathrm{A}-\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ और $\mathrm{B}-\mathrm{A}$ परस्पर असंयुक्त होते हैं अर्थात् इनमें से किसी दो समुच्चयों का सर्वनिष्ठ समुच्चय एक रिक्त समुच्चय होता है जैसा कि

आकृति 1.9 आकृति 1.9 में प्रदर्शित है।

प्रश्नावली 1.4

1. निम्नलिखित में से प्रत्येक समुच्चय युग्म का सम्मिलन ज्ञात कीजिए:

(i) $\mathrm{X}=\{1,3,5\}, \quad \mathrm{Y}=\{1,2,3\}$

(ii) $\mathrm{A}=[a, e, i, o, u\}, \mathrm{B}=\{a, b, c\}$

(iii) $\mathrm{A}=\{x: x$ एक प्राकृत संख्या है और 3 का गुणज है $\}$ $\mathrm{B}=\{x: x$ संख्या 6 से कम एक प्राकृत संख्या है $\}$

(iv) $\mathrm{A}=\{x: x$ एक प्राकृत संख्या है और $1<x \leq 6\}$ $\mathrm{B}=\{x: x$ एक प्राकृत संख्या है और $6<x<10\}$

(v) $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\phi$

2. मान लीजिए कि $\mathrm{A}=\{a, b\}, \mathrm{B}=\{a, b, c\}$. क्या $\mathrm{A} \subset \mathrm{B}$ ? $\mathrm{A} \cup \mathrm{B}$ ज्ञात कीजिए।

3. यदि $\mathrm{A}$ और $\mathrm{B}$ दो ऐसे समुच्चय हैं कि $\mathrm{A} \subset \mathrm{B}$, तो $\mathrm{A} \cup \mathrm{B}$ क्या है ?

4. यदि $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{3,4,5,6\}, \mathrm{C}=\{5,6,7,8\}$ और $\mathrm{D}=\{7,8,9,10\}$, तो निम्नलिखित ज्ञात कीजिए:

(i) $\mathrm{A} \cup \mathrm{B}$

(ii) $\mathrm{A} \cup \mathrm{C}$

(iii) $\mathrm{B} \cup \mathrm{C}$

(iv) $\mathrm{B} \cup \mathrm{D}$

(v) $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$

(vi) $\mathrm{A} \cup \mathrm{B} \cup \mathrm{D}$

(vii) $\mathrm{B} \cup \mathrm{C} \cup \mathrm{D}$

5. प्रश्न 1 में दिए प्रत्येक समुच्चय युग्म का सर्वनिष्ठ समुच्चय ज्ञात कीजिए।

6. यदि $\mathrm{A}=\{3,5,7,9,11\}, \mathrm{B}=\{7,9,11,13\}, \mathrm{C}=\{11,13,15\}$ और $\mathrm{D}=\{15,17\}$; तो निम्नलिखित ज्ञात कीजिए:

(i) $\mathrm{A} \cap \mathrm{B}$

(ii) $\mathrm{B} \cap \mathrm{C}$

(iii) $\mathrm{A} \cap \mathrm{C} \cap \mathrm{D}$

(iv) $\mathrm{A} \cap \mathrm{C}$

(v) $\mathrm{B} \cap \mathrm{D}$

(vi) $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})$

(vii) $\mathrm{A} \cap \mathrm{D}$

(viii) $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{D})$

(ix) $(A \cap B) \cap(B \cup C)$

(x) $(A \cup D) \cap(B \cup C)$

7. यदि $\mathrm{A}=\{x: x$ एक प्राकृत संख्या है $\}, \mathrm{B}=\{x: x$ एक सम प्राकृत संख्या है $\}$ $\mathrm{C}=\{x: x$ एक विषम प्राकृत संख्या है $\} \mathrm{D}=\{x: x$ एक अभाज्य संख्या है $\}$, तो निम्नलिखित ज्ञात कीजिए:

(i) $\mathrm{A} \cap \mathrm{B}$

(ii) $\mathrm{A} \cap \mathrm{C}$

(iii) $\mathrm{A} \cap \mathrm{D}$

(iv) $\mathrm{B} \cap \mathrm{C}$

(v) $\mathrm{B} \cap \mathrm{D}$

(vi) $\mathrm{C} \cap \mathrm{D}$

8. निम्नलिखित समुच्चय युग्मों में से कौन से युग्म असंयुक्त हैं?

(i) $\{1,2,3,4\}$ तथा $\{x: x$ एक प्राकृत संख्या है और $4 \leq x \leq 6\}$

(ii) $\{a, e, i, o, u\}$ तथा $\{c, d, e, f\}$

(iii) $\{x: x$ एक सम पूर्णांक है $\}$ और $\{x: x$ एक विषम पूर्णांक है $\}$

9. यदि $\mathrm{A}=\{3,6,9,12,15,18,21\}, \mathrm{B}=\{4,8,12,16,20\}$, $\mathrm{C}=\{2,4,6,8,10,12,14,16\}, \mathrm{D}=\{5,10,15,20\}$; तो निम्नलिखित को ज्ञात कीजिए:

(i) $\mathrm{A}-\mathrm{B}$

(ii) $\mathrm{A}-\mathrm{C}$

(iii) $\mathrm{A}-\mathrm{D}$

(iv) $\mathrm{B}-\mathrm{A}$

(v) $\mathrm{C}-\mathrm{A}$

(vi) $\mathrm{D}-\mathrm{A}$

(vii) $\mathrm{B}-\mathrm{C}$

(viii) $\mathrm{B}-\mathrm{D}$

(ix) $\mathrm{C}-\mathrm{B}$

(x) $\mathrm{D}-\mathrm{B}$

(xi) $\mathrm{C}-\mathrm{D}$

(xii) $\mathrm{D}-\mathrm{C}$

10. यदि $\mathrm{X}=\{a, b, c, d\}$ और $\mathrm{Y}=\{f, b, d, g\}$, तो निम्नलिखित को ज्ञात कीजिए:

(i) $\mathrm{X}-\mathrm{Y}$

(ii) $\mathrm{Y}-\mathrm{X}$

(iii) $\mathrm{X} \cap \mathrm{Y}$

11. यदि $\mathbf{R}$ वास्तविक संख्याओं और $\mathbf{Q}$ परिमेय संख्याओं के समुच्चय हैं, तो $\mathbf{R}-\mathbf{Q}$ क्या होगा ?

12. बताइए कि निम्नलिखित कथनों में से प्रत्येक सत्य है या असत्य? अपने उत्तर का औचित्य भी बताइए:

(i) $\{2,3,4,5\}$ तथा $\{3,6\}$ असंयुक्त समुच्चय हैं।

(ii) $\{a, e, i, o, u\}$ तथा $\{a, b, c, d\}$ असंयुक्त समुच्चय हैं।

(iii) $\{2,6,10,14\}$ तथा $\{3,7,11,15\}$ असंयुक्त समुच्चय हैं।

(iv) $\{2,6,10\}$ तथा $\{3,7,11\}$ असंयुक्त समुच्चय हैं।

1.10 समुच्चय का पूरक (Complement of a Set)

मान लीजिए कि सभी अभाज्य संख्याओं का सार्वत्रिक समुच्चय $U$ है तथा $A, U$ का वह उपसमुच्चय है, जिसमें वे सभी अभाज्य संख्याएँ हैं जो 42 की भाजक नहीं हैं। इस प्रकार $\mathrm{A}=\{x: x \in \mathrm{U}$ और $x$ संख्या 42 का भाजक नहीं है $\}$ । हम देखते हैं कि $2 \in \mathrm{U}$ किंतु $2 \notin \mathrm{A}$, क्योंकि 2 संख्या 42 का एक भाजक है। इसी प्रकार $3 \in \mathrm{U}$ किंतु $3 \notin \mathrm{A}$, तथा $7 \in \mathrm{U}$ किंतु $7 \notin \mathrm{A}$ अब केवल 2,3 तथा 7 ही $U$ के ऐसे अवयव हैं जो $A$ में नहीं हैं। इन तीन अभाज्य संख्याओं का समुच्चय अर्थात् समुच्चय $\{2,3,7\}, \mathrm{U}$ के सापेक्ष $\mathrm{A}$ का पूरक समुच्चय कहलाता है और इसे प्रतीक $\mathrm{A}^{\prime}$ से निरूपित किया जाता है। अत: $\mathrm{A}^{\prime}=\{2,3,7\}$ इस प्रकार हम देखते हैं कि $\mathrm{A}^{\prime}=\{x: x \in \mathrm{U}$ और $x \notin \mathrm{A}\}$ है। इससे निम्नलिखित परिभाषा प्राप्त होती है:

परिभाषा 7 मान लीजिए कि $\mathrm{U}$ एक सार्वत्रिक समुच्चय है और $\mathrm{A}, \mathrm{U}$ का एक उपसमुच्चय है, तो $\mathrm{A}$ का पूरक समुच्चय $\mathrm{U}$ के उन अवयवों का समुच्चय है, जो $\mathrm{A}$ के अवयव नहीं हैं। प्रतीकात्मक रूप में हम $\mathrm{U}$ के सापेक्ष $\mathrm{A}$ के पूरक को प्रतीक $\mathrm{A}^{\prime}$ से निरूपित करते हैं। अतः $\mathrm{A}^{\prime}=\{x: x \in$ $\mathrm{U}$ और $x \notin \mathrm{A}\}$ हम लिख सकते हैं। $\mathrm{A}=\mathrm{U}-\mathrm{A}$

ध्यान दीजिए कि $A$ के पूरक समुच्चय को, विकल्पतः, सार्वत्रिक समुच्चय $U$ तथा समुच्चय $A$ के अंतर के रूप में देखा जा सकता है।

उदाहरण 20 मान लीजिए कि $\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}$ और $\mathrm{A}=\{1,3,5,7,9\}$ है तो $\mathrm{A}^{\prime}$ ज्ञात कीजिए।

हल हम नोट करते हैं केवल $2,4,6,8,10$ ही $\mathrm{U}$ के ऐसे अवयव हैं जो $\mathrm{A}$ में नहीं हैं। अत: $\mathrm{A}^{\prime}=\{2,4,6,8,10\}$.

उदाहरण 21 मान लीजिए कि $\mathrm{U}$ एक सह शिक्षा विद्यालय के कक्षा $\mathrm{XI}$ के सभी विद्यार्थियों का सार्वत्रिक समुच्चय है और $\mathrm{A}$, कक्षा $\mathrm{XI}$ की सभी लड़कियों का समुच्चय है तो $\mathrm{A}^{\prime}$ ज्ञात कीजिए। हल क्योंकि $\mathrm{A}$, कक्षा $\mathrm{XI}$ की सभी लड़कियों का समुच्चय है, अतः $\mathrm{A}^{\prime}$ स्पष्टतया कक्षा के सभी लड़कों का समुच्चय है।

0 टिप्पणी यदि $\mathrm{A}$ सार्वत्रिक समुच्चय $\mathrm{U}$ का एक उपसमुच्चय है, तो इसका पूरक $\mathrm{A}^{\prime}$ भी $\mathrm{U}$ का एक उपसमुच्चय होता है।

पुनः उपर्युक्त उदाहरण 20 में,

अत: $\left(\mathrm{A}^{\prime}\right)^{\prime}$

$$ \begin{aligned} \mathrm{A}^{\prime} & =\{2,4,6,8,10\} \ & =\left\{x: x \in \mathrm{U} \text { और } x \notin \mathrm{A}^{\prime}\right\} \ & =\{1,3,5,7,9\}=\mathrm{A} \end{aligned} $$

पूरक समुच्चय की परिभाषा से स्पष्ट है कि सार्वत्रिक समुच्चय $U$ के किसी उपसमुच्चय $A^{\prime}$ के लिए $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$

अब निम्नलिखित उदाहरण में हम $(\mathrm{A} \cup \mathrm{B})^{\prime}$ तथा $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$ के हल निकालेंगे।

उदाहरण 22 मान लीजिए कि $\mathrm{U}=\{1,2,3,4,5,6\}, \mathrm{A}=\{2,3\}$ और $\mathrm{B}=\{3,4,5\}$, $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}, \mathrm{A} \cup \mathrm{B}$ ज्ञात कीजिए और फिर सिद्ध कीजिए कि $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$.

हल स्पष्टतया $\mathrm{A}^{\prime}=\{1,4,5,6\}, \mathrm{B}^{\prime}=\{1,2,6\}$ । अत: $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}=\{1,6\}$

पुन: $\mathrm{A} \cup \mathrm{B}=\{2,3,4,5\}$ है। इसलिए $(\mathrm{A} \cup \mathrm{B})^{\prime}=\{1,6\}$

$$ (\mathrm{A} \cup \mathrm{B})^{\prime}=\{1,6\}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} $$

इस प्रकार हम देखते हैं कि $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$. यह सिद्ध किया जा सकता है कि उपर्युक्त परिणाम व्यापक रूप से सत्य होता है यदि $\mathrm{A}$ और $\mathrm{B}$ सार्वजनिक समुच्चय $\mathrm{U}$ के कोई दो उपसमुच्चय हैं, तो $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$. इसी प्रकार $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$ इन परिणामों को शब्दों में इस प्रकार व्यक्त करते हैं:

“दो समुच्चयों के सम्मिलन का पूरक उनके पूरक समुच्चयों का सार्वनिष्ठ होता है तथा दोनों समुच्चयों के सार्वनिष्ठ का पूरक उनके पूरक समुच्चयों

का सम्मिलन होता है।” इनको De Morgan के नियम कहते हैं।

यह नाम गणितज्ञ De Morgan के नाम पर रखा गया है। किसी समुच्चय $\mathrm{A}$ के पूरक $\mathrm{A}^{\prime}$ को वेन आरेख द्वारा निरूपित किया जा सकता है जैसा कि आकृति 1.10 में प्रदर्शित है। छायांकित भाग समुच्चय $\mathrm{A}$ के पूरक $\mathrm{A}^{\prime}$ को दर्शाता है।

आकृति 1.10

पूरकों के कुछ गुणधर्म

1. पूरक नियम : (i) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$ (ii) $\mathrm{A} \cap \mathrm{A}^{\prime}=\phi$

2. De Morgan का नियम : (i) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$ (ii) $\left(\mathrm{A} \cap \mathrm{B}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right.$

3. द्वि-पूरक नियम : $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$

4. $\phi^{\prime}$ और $\mathrm{U}$ के नियम : $\phi^{\prime}=\mathrm{U}$ और $\mathrm{U}^{\prime}=\phi$.

इन नियमों का सत्यापन वेन आरेखों द्वारा किया जा सकता है।

प्रश्नावली 1.5

1. मान लीजिए कि $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\}, \mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,4,6,8\}$ और $\mathrm{C}=\{3,4,5,6\}$ तो निम्नलिखित ज्ञात कीजिए: (i) $\mathrm{A}^{\prime}$ (ii) $\mathrm{B}^{\prime}$ (iii) $(\mathrm{A} \cup \mathrm{C})^{\prime}$ (iv) $(A \cup B)^{\prime}$ (v) $\left(\mathrm{A}^{\prime}\right)^{\prime}$ (vi) $(\mathrm{B}-\mathrm{C})^{\prime}$

2. If $\mathrm{U}=\{a, b, c, d, e, f, g, h\}$, तो निम्नलिखित समुच्चयों के पूरक ज्ञात कीजिए: (i) $\mathrm{A}=\{a, b, c\}$ (ii) $\mathrm{B}=\{d, e, f, g\}$ (iii) $\mathrm{C}=\{a, c, e, g\}$ (iv) $\mathrm{D}=\{f, g, h, a\}$

3. प्राकृत संख्याओं के समुच्चय को सार्वत्रिक समुच्चय मानते हुए, निम्नलिखित समुच्चयों के पूरक लिखिए:

(i) $\{x: x$ एक प्राकृत सम संख्या है $\}$

(ii) $\{x: x$ एक प्राकृत विषम संख्या है $\}$

(iii) $\{x: x$ संख्या 3 का एक धन गुणज है $\}$

(iv) $\{x: x$ एक अभाज्य संख्या है $\}$ (v) $\{x: x, 3$ और 5 से विभाजित होने वाली एक संख्या है $\}$

(vi) $\{x: x$ एक पूर्ण वर्ग संख्या है $\}$

(vii) $\{x: x$ एक पूर्ण घन संख्या है $\}$

(viii) $\{x: x+5=8\}$

(ix) $\{x: 2 x+5=9\}$

(x) $\{x: x \geq 7\}$

(xi) $\{x: x \in \mathrm{N}$ और $2 x+1>10\}$

4. यदि $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\}, \mathrm{A}=\{2,4,6,8\}$ और $\mathrm{B}=\{2,3,5,7\}$, तो सत्यापित कीजिए कि: (i) $(\mathrm{A} \cup$ B) $)^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$ (ii) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$

5. निम्नलिखित में से प्रत्येक के लिए उपर्युक्त वेन आरेख खींचिए: (i) $(\mathrm{A} \cup \mathrm{B})^{\prime}$ (ii) $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$ (iii) $(\mathrm{A} \cap \mathrm{B})^{\prime}$ (iv) $\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$

6. मान लीजिए कि किसी समतल में स्थित सभी त्रिभुजों का समुच्चय सार्वत्रिक समुच्चय $U$ है। यदि $\mathrm{A}$ उन सभी त्रिभुजों का समुच्चय है जिनमें कम से कम एक कोण $60^{\circ}$ से भिन्न है, तो $\mathrm{A}^{\prime}$ क्या है?

7. निम्नलिखित कथनों को सत्य बनाने के लिए रिक्त स्थानों को भरिए: (i) $\mathrm{A} \cup \mathrm{A}^{\prime}=\ldots$ (ii) $\phi^{\prime} \cap \mathrm{A}=$ (iii) $\mathrm{A} \cap \mathrm{A}^{\prime}=\ldots$ (iv) $\mathrm{U}^{\prime} \cap \mathrm{A}=$

विविध उदाहरण

उदाहरण 23 दिखाइए कि शब्द “CATARACT” के वर्ण विन्यास के अक्षरों का समुच्चय तथा शब्द “TRACT” के वर्णविन्यास के अक्षरों का समुच्चय समान है।

हल मान लीजिए कि X “CATARACT” के अक्षरों का समुच्चय है, तो

$$ \mathrm{X}=\{\mathrm{C}, \mathrm{A}, \mathrm{T}, \mathrm{A}, \mathrm{R}, \mathrm{A}, \mathrm{C}, \mathrm{T}\}=\{\mathrm{C}, \mathrm{A}, \mathrm{T}, \mathrm{R}\} $$

मान लीजिए कि $\mathrm{Y}$ “TRACT” के अक्षरों का समुच्चय है, तो

$$ \mathrm{Y}=\{\mathrm{T}, \mathrm{R}, \mathrm{A}, \mathrm{C}\} $$

क्योंकि $\mathrm{X}$ का प्रत्येक अवयव $\mathrm{Y}$ में है तथा $\mathrm{Y}$ का प्रत्येक अवयव $\mathrm{X}$ में है, अतः $\mathrm{X}=\mathrm{Y}$

उदाहरण 24 समुच्चय $\{-1,0,1\}$ के सभी उपसमुच्चयों की सूची बनाइए।

हल माना $\mathrm{A}=\{-1,0,1\}$ है। समुच्चय $\mathrm{A}$ का वह उपसमुच्चय जिसमें कोई भी अवयव नहीं है रिक्त समुच्चय $\phi$ है। $\mathrm{A}$ के एक अवयव वाले उपसमुच्चय $\{-1\},\{0\},\{1\}$ हैं। $\mathrm{A}$ के दो अवयव वाले समुच्चय $\{-1,0\},\{-1,1\},\{0,1\}$ हैं। $\mathrm{A}$ के तीन अवयव वाला उपसमुच्चय $\mathrm{A}$ स्वयं है। इस प्रकार $\mathrm{A}$ के सभी उपसमुच्चय $\phi,\{-1\},\{0\},\{1\},\{-1,0\},\{-1,1\},\{0,1\}$ तथा $\{-1,0,1\}$ हैं। उदाहरण 25 सिद्ध कीजिए कि $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B}$ का तात्पर्य है कि $\mathrm{A}=\mathrm{B}$

हल यदि कोई अवयव $a \in \mathrm{A}$, तो $a \in \mathrm{A} \cup \mathrm{B}$. क्योंकि $\mathrm{A \cup B}=\mathrm{A} \cap \mathrm{B}$, इसलिए $a \in \mathrm{A} \cap \mathrm{B}$. अत: $a \in \mathrm{B}$. इस प्रकार $\mathrm{A} \subset \mathrm{B}$. इसी प्रकार यदि $b \in \mathrm{B}$, तो $b \in \mathrm{A} \cup \mathrm{B}$. क्योंकि $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B}$ इसलिए, $b \in \mathrm{A} \cap \mathrm{B}$. इस प्रकार $b \in \mathrm{A}$. अत: $\mathrm{B} \subset \mathrm{A}$ अतएव $\mathrm{A}=\mathrm{B}$.

अध्याय 1 पर विविध प्रश्नावली

1. निम्नलिखित समुच्चयों में से कौन किसका उपसमुच्चय है, इसका निर्णय कीजिए:

$\mathrm{A}=\left\{x: x \in \mathrm{R}\right.$ तथा $x^{2}-8 x+12=0$ को संतुष्ट करने वाली सभी वास्तविक संख्याएँ $x\}, \mathrm{B}=\{2,4,6\}, \mathrm{C}=\{2,4,6,8, \ldots\}, \mathrm{D}=\{6\}$.

2. ज्ञात कीजिए कि निम्नलिखित में से प्रत्येक कथन सत्य है या असत्य है। यदि सत्य है, तो उसे सिद्ध कीजिए। यदि असत्य है, तो एक उदाहरण दीजिए।

(i) यदि $x \in \mathrm{A}$ तथा $\mathrm{A} \in \mathrm{B}$, तो $x \in \mathrm{B}$

(ii) यदि $\mathrm{A} \subset \mathrm{B}$ तथा $\mathrm{B} \in \mathrm{C}$, तो $\mathrm{A} \in \mathrm{C}$

(iii) यदि $\mathrm{A} \subset \mathrm{B}$ तथा $\mathrm{B} \subset \mathrm{C}$, तो $\mathrm{A} \subset \mathrm{C}$

(iv) यदि $\mathrm{A} \not \subset \mathrm{B}$ तथा $\mathrm{B} \not \subset \mathrm{C}$, तो $\mathrm{A} \not \subset \mathrm{C}$

(v) यदि $x \in \mathrm{A}$ तथा $\mathrm{A} \not \subset \mathrm{B}$, तो $x \in \mathrm{B}$

(vi) यदि $\mathrm{A} \subset \mathrm{B}$ तथा $x \notin \mathrm{B}$, तो $x \notin \mathrm{A}$

3. मान लीजिए $\mathrm{A}, \mathrm{B}$, और $\mathrm{C}$ ऐसे समुच्चय हैं कि $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}$ तथा $\mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}$, तो दर्शाइए कि $\mathrm{B}=\mathrm{C}$.

4. दिखाइए कि निम्नलिखित चार प्रतिबंध तुल्य हैं: (i) $\mathrm{A} \subset \mathrm{B}$ (ii) $\mathrm{A}-\mathrm{B}=\varphi$ (iii) $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$ (iv) $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$

5. दिखाइए कि यदि $\mathrm{A} \subset \mathrm{B}$, तो $\mathrm{C}-\mathrm{B} \subset \mathrm{C}-\mathrm{A}$.

6. किन्हीं दो समुच्चयों $\mathrm{A}$ तथा $\mathrm{B}$ के लिए सिद्ध कीजिए कि,

$\mathrm{A}=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A}-\mathrm{B})$ और $\mathrm{A} \cup(\mathrm{B}-\mathrm{A})=(\mathrm{A} \cup \mathrm{B})$

7. समुच्चयों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए कि: (i) $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$ (ii) $\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A}$.

8. दिखलाइए कि $\mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}$ का तात्पर्य $\mathrm{B}=\mathrm{C}$ आवश्यक रूप से नहीं होता है।

9. मान लीजिए कि $\mathrm{A}$ और $\mathrm{B}$ समुच्चय हैं। यदि किसी समुच्चय $\mathrm{X}$ के लिए $\mathrm{A} \cap \mathrm{X}=\mathrm{B} \cap \mathrm{X}=\varphi$ तथा $\mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}$, तो सिद्ध कीजिए कि $\mathrm{A}=\mathrm{B}$.

(संकेत: $\mathrm{A}=\mathrm{A} \cap(\mathrm{A} \cup \mathrm{X}), \mathrm{B}=\mathrm{B} \cap(\mathrm{B} \cup \mathrm{X})$ और वितरण नियम का प्रयोग कीजिए)

10. ऐसे समुच्चय $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ ज्ञात कीजिए ताकि $\mathrm{A} \cap \mathrm{B}, \mathrm{B} \cap \mathrm{C}$ तथा $\mathrm{A} \cap \mathrm{C}$ आरिक्त समुच्चय हों और $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=\varphi$.

सारांश

इस अध्याय में समुच्चयों से संबंधित कुछ मूलभूत परिभाषाओं और संक्रियाओं पर विचार किया गया है। जिसका सार नीचे दिया है।

$\checkmark$ एक समुच्चय वस्तुओं का सुपरिभाषित संग्रह होता है।

एक समुच्चय जिसमें एक भी अवयव नहीं होता है, रिक्त समुच्चय कहलाता है।

ए एक समुच्चय जिसमें अवयवों की संख्या निश्चित होती है परिमित समुच्चय कहलाता है अन्यथा अपरिमित समुच्चय कहलाता है।

दो समुच्चय $\mathrm{A}$ और $\mathrm{B}$ समान कहलाते हैं यदि उनमें तथ्यतः समान अवयव हों।

एक समुच्चय $\mathrm{A}$ किसी समुच्चय $\mathrm{B}$ का उपसमुच्चय कहलाता है, यदि $\mathrm{A}$ का प्रत्येक अवयव $B$ का भी अवयव हो। अंतराल समुच्चय $R$ के उपसमुच्चय होते हैं।

दो समुच्चय $\mathrm{A}$ और $\mathrm{B}$ का सम्मिलन उन सभी अवयवों का समुच्चय होता है जो या तो $\mathrm{A}$ में हों या $\mathrm{B}$ में हों।

दो समुच्चय $\mathrm{A}$ और $\mathrm{B}$ का सर्वनिष्ठ उन सभी अवयवों का समुच्चय होता है जो $\mathrm{A}$ और $\mathrm{B}$ दोनों में उभयनिष्ठ हों। दो समुच्चय $\mathrm{A}$ और $\mathrm{B}$ का अंतर, जब $\mathrm{A}$ तथा $\mathrm{B}$ इसी क्रम में हो, उन सभी अवयवों का समुच्चय है, जो $A$ में हों किंतु $B$ में नहीं हों।

किन्हीं दो समुच्चय $\mathrm{A}$ तथा $\mathrm{B}$ के लिए, $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$ तथा $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$

ऐतिहासिक पृष्ठभूमि

जर्मन गणित Georg Cantor (1845 ई० - 1918 ई०) को आधुनिक समुच्चय सिद्धांत के अधिकांश भाग का जन्मदाता माना जाता है। समुच्चय सिद्धांत पर उनके शोध पत्र 1874 ई० से 1897 ई० के बीच के किसी समय में प्रकाश में आए। उनका समुच्चय सिद्धांत का अध्ययन उस समय हुआ जब वे $a_{1} \sin x+a_{2} \sin 2 x+a_{3} \sin 3 x+\ldots$ के रूप की त्रिकोणमितीय श्रेणी का अध्ययन कर रहे थे।

1874 ई॰ में अपने एक शोध पत्र में यह प्रकाशित किया कि वास्तविक संख्याओं को पूर्णांकों के साथ एक-एक संगतता में नहीं रखा जा सकता है। 1879 ई० के उत्तरार्ध में अमूर्त समुच्चयों के विभिन्न गुणधर्मों को दर्शाने वाले उनके अनेक शोध पत्र प्रकाशित हुए।

Cantor के शोध को एक अन्य विख्यात गणितज्ञ Richard Dedekind (1831ई०1916 ई०) ने प्रशंसनीय ढंग से स्वीकार किया। लेकिन Kronecker (1810-1893 ई०) ने अपरिमित समुच्चयों को, उसी प्रकार से लेने के लिए जिस प्रकार परिमित समुच्चयों को लिया जाता है, उनकी भर्त्सना की। एक दूसरे जर्मन गणितज्ञ Gottlob Frege ने शताब्दी की समाप्ति पर समुच्चय सिद्धांत को तर्कशास्त्र के नियमों के रूप में प्रस्तुत किया। उस समय

तक संपूर्ण समुच्चय सिद्धांत सभी समुच्चयों के समुच्चय के अस्तित्व की कल्पना पर आधारित था। यह विख्यात अंग्रेज दार्शिनिक Bertand Russell (1872 ई.-1970 ई॰) थे जिन्होंने 1902 ई० में बतलाया कि सभी समुच्चयों के समुच्चय के अस्तित्व की कल्पना एक विरोधोक्ति को जन्म देती है। इस प्रकार Russell की विख्यात विरोधोक्ति मिली। Paul R.Halmos ने इसके बारे में अपनी पुस्तक ‘Naïve Set Theory’ में लिखा है कि “कुछ नहीं में सब कुछ समाहित है”।

इन सभी विरोधोक्तियों के परिणामस्वरूप समुच्चय सिद्धांत का पहला अभिगृहीतीकरण 1908 ई० में Ernst Zermelo द्वारा प्रकाशित किया गया। 1922 ई० में Abraham Fraenkel ने एक दूसरा प्रस्ताव भी दिया। 1925 ई० में John Von Neumann ने नियमितीकरण का अभिगृहीत स्पष्ट रूप से प्रस्तुत किया। इसके बाद 1937 ई० में Paul Bernays ने सन्तोषजनक अभिगृहीतिकरण प्रस्तुत किया। इन अभिगृहीतों में सुधार, Kurt Gödel द्वारा 1940 ई॰ में अपने मोनोग्राफ में प्रस्तुत किया गया। इस सुधार को Von Neumann-Bernays (VNB) अथवा Gödel-Bernays (GB) का समुच्चय सिद्धांत कहते हैं।

इन सभी कठिनाइयों के बावजूद, Cantor के समुच्चय सिद्धांत को वर्तमान काल के गणित में प्रयोग किया जाता है। वास्तव में आजकल गणित के अधिकांश संकल्पनाएँ तथा परिणामों को समुच्चय सैद्धांतिक भाषा में प्रस्तुत करते हैं।



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane