Physics And Measurement Question 155

Question: Pressure gradient has the same dimension as that of?

[AFMC 2004]

Options:

A) Velocity gradient

B) Potential gradient

C) Energy gradient

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Velocity gradient $ =\frac{v}{x}=\frac{[L{{T}^{-1}}]}{[L]}=[{{T}^{-1}}] $

Potential gradient $ =\frac{V}{x}=\frac{[ML^{2}{{T}^{-3}}{{A}^{-1}}]}{[L]} $

$ =[ML{{T}^{-3}}{{A}^{-1}}] $

Energy gradient $ =\frac{E}{x}=\frac{[ML^{2}T^{2}]}{[L]}=[ML{{T}^{-2}}] $

and pressure gradient $ =\frac{P}{x}=\frac{[M{{L}^{-1}}{{T}^{-2}}]}{[L]}=[M{{L}^{-2}}{{T}^{-2}}] $



NCERT Chapter Video Solution

Dual Pane