Physics And Measurement Question 155
Question: Pressure gradient has the same dimension as that of?
[AFMC 2004]
Options:
A) Velocity gradient
B) Potential gradient
C) Energy gradient
D) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
Velocity gradient $ =\frac{v}{x}=\frac{[L{{T}^{-1}}]}{[L]}=[{{T}^{-1}}] $
Potential gradient $ =\frac{V}{x}=\frac{[ML^{2}{{T}^{-3}}{{A}^{-1}}]}{[L]} $
$ =[ML{{T}^{-3}}{{A}^{-1}}] $
Energy gradient $ =\frac{E}{x}=\frac{[ML^{2}T^{2}]}{[L]}=[ML{{T}^{-2}}] $
and pressure gradient $ =\frac{P}{x}=\frac{[M{{L}^{-1}}{{T}^{-2}}]}{[L]}=[M{{L}^{-2}}{{T}^{-2}}] $