Laws Of Motion Question 397

Question: If dimensions of velocity is $ b{{c}^{-1}}, $ acceleration $ b{{c}^{-2}} $ and length $ ab, $ the dimensions of coefficient of friction are

Options:

A) $ a^{0}b^{0}c^{0} $

B) $ {{a}^{-1}}b^{0}c^{0} $

C) $ a^{1}b^{0}c^{0} $

D) $ {{a}^{-1}}{{b}^{-1}}c^{0} $

Show Answer

Answer:

Correct Answer: B

Solution:

Here, we look for an equation involving velocity v, acceleration g and length r and coefficient of friction

$ {{\mu } _{s}} $ . We arrive at

$ {{\mu } _{s}}=\tan \theta =\frac{v^{2}}{rg}=\frac{b^{2}{{c}^{-2}}}{b{{c}^{-2}}ab}={{a}^{-1}}b^{0}c^{0} $



NCERT Chapter Video Solution

Dual Pane