Laws Of Motion Question 397
Question: If dimensions of velocity is $ b{{c}^{-1}}, $ acceleration $ b{{c}^{-2}} $ and length $ ab, $ the dimensions of coefficient of friction are
Options:
A) $ a^{0}b^{0}c^{0} $
B) $ {{a}^{-1}}b^{0}c^{0} $
C) $ a^{1}b^{0}c^{0} $
D) $ {{a}^{-1}}{{b}^{-1}}c^{0} $
Show Answer
Answer:
Correct Answer: B
Solution:
Here, we look for an equation involving velocity v, acceleration g and length r and coefficient of friction
$ {{\mu } _{s}} $ . We arrive at
$ {{\mu } _{s}}=\tan \theta =\frac{v^{2}}{rg}=\frac{b^{2}{{c}^{-2}}}{b{{c}^{-2}}ab}={{a}^{-1}}b^{0}c^{0} $