**7.** $\tan ^{-1}(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}), a>0 ; \frac{-a}{\sqrt{3}}
======
Inverse Trigonometric Functions
#### Answer
**Answer**
$
\begin{aligned}
& \tan ^{-1}(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}) \\\\
& \text{ Put } x=a \tan \theta \Rightarrow \frac{x}{a}=\tan \theta \Rightarrow \theta=\tan ^{-1} \frac{x}{a} \\\\
& \tan ^{-1}(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}})\\\\
&=\tan ^{-1}(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta})
\end{aligned}
$
**उत्तर**
$
\begin{aligned}
& \tan ^{-1}(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}) \\\\
& \text{ रखो } x=a \tan \theta \Rightarrow \frac{x}{a}=\tan \theta \Rightarrow \theta=\tan ^{-1} \frac{x}{a} \\\\
& \tan ^{-1}(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}})\\\\
&=\tan ^{-1}(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta})
\end{aligned}
$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
$
\begin{aligned}
& =\tan ^{-1}(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}) \\\\
& =\tan ^{-1}(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}) \\\\
& =\tan ^{-1}(\tan 3 \theta) =3 \theta =3 \tan ^{-1} \frac{x}{a}
\end{aligned}
$
======
Inverse Trigonometric Functions
#### Question
**8.** $\tan ^{-1}[2 \cos (2 \sin ^{-1} \frac{1}{2})]$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
Let $\sin ^{-1} \frac{1}{2}=x$. Then, $\sin x=\frac{1}{2}=\sin (\frac{\pi}{6})$.
$\therefore \sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
$\therefore \tan ^{-1}[2 \cos (2 \sin ^{-1} \frac{1}{2})]=\tan ^{-1}[2 \cos (2 \times \frac{\pi}{6})]$
$=\tan ^{-1}[2 \cos \frac{\pi}{3}]=\tan ^{-1}[2 \times \frac{1}{2}]$
$=\tan ^{-1} 1=\frac{\pi}{4}$
**उत्तर**
मान लीजिए $\sin ^{-1} \frac{1}{2}=x$. फिर, $\sin x=\frac{1}{2}=\sin (\frac{\pi}{6})$.
$\therefore \sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
$\therefore \tan ^{-1}[2 \cos (2 \sin ^{-1} \frac{1}{2})]=\tan ^{-1}[2 \cos (2 \times \frac{\pi}{6})]$
$=\tan ^{-1}[2 \cos \frac{\pi}{3}]=\tan ^{-1}[2 \times \frac{1}{2}]$
$=\tan ^{-1} 1=\frac{\pi}{4}$
======
Inverse Trigonometric Functions
#### Question
**9.** $\tan \frac{1}{2}[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}],|x|<1, y>0$ and $x y<1$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
Let $x=\tan \theta$. Then, $\theta=\tan ^{-1} x$.
$\therefore \sin ^{-1} \frac{2 x}{1+x^{2}}=\sin ^{-1}(\frac{2 \tan \theta}{1+\tan ^{2} \theta})=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x$
Let $y=\tan \Phi$. Then, $\Phi=\tan ^{-1} y$.
$
\begin{aligned}
& \therefore \cos ^{-1} \frac{1-y^{2}}{1+y^{2}}=\cos ^{-1}(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi})\\\\
&=\cos ^{-1}(\cos 2 \phi)=2 \phi=2 \tan ^{-1} y
\end{aligned}
$
**उत्तर**
मान लीजिए $x=\tan \theta$. फिर, $\theta=\tan ^{-1} x$.
$\therefore \sin ^{-1} \frac{2 x}{1+x^{2}}=\sin ^{-1}(\frac{2 \tan \theta}{1+\tan ^{2} \theta})=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x$
मान लीजिए $y=\tan \Phi$. फिर, $\Phi=\tan ^{-1} y$.
$
\begin{aligned}
& \therefore \cos ^{-1} \frac{1-y^{2}}{1+y^{2}}=\cos ^{-1}(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi})\\\\
&=\cos ^{-1}(\cos 2 \phi)=2 \phi=2 \tan ^{-1} y
\end{aligned}
$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
$
\begin{aligned}
& \therefore \tan \frac{1}{2}[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}] \\\\
& =\tan \frac{1}{2}[2 \tan ^{-1} x+2 \tan ^{-1} y] \\\\
& =\tan [\tan ^{-1} x+\tan ^{-1} y] \\\\
& =\tan [\tan ^{-1}(\frac{x+y}{1-x y})] \\\\
& =\frac{x+y}{1-x y}
\end{aligned}
$
======
Inverse Trigonometric Functions
#### Question
**10.** $\sin ^{-1}(\sin \frac{2 \pi}{3})$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
$\sin ^{-1}(\sin \frac{2 \pi}{3})$
We know that $\sin ^{-1}(\sin x)=x$ if $x \in[-\frac{\pi}{2}, \frac{\pi}{2}]$, which is the principal value branch of $\sin ^{-1} x$.
Here, $\frac{2 \pi}{3} \notin[\frac{-\pi}{2}, \frac{\pi}{2}]$
Now, $\sin ^{-1}(\sin \frac{2 \pi}{3})$ can be written as:
$\sin ^{-1}(\sin \frac{2 \pi}{3})=\sin ^{-1}[\sin (\pi-\frac{2 \pi}{3})]=\sin ^{-1}(\sin \frac{\pi}{3})$ where $\frac{\pi}{3} \in[\frac{-\pi}{2}, \frac{\pi}{2}]$
$\therefore \sin ^{-1}(\sin \frac{2 \pi}{3})=\sin ^{-1}(\sin \frac{\pi}{3})=\frac{\pi}{3}$
**उत्तर**
$\sin ^{-1}(\sin \frac{2 \pi}{3})$
हम जानते हैं कि $\sin ^{-1}(\sin x)=x$ यदि $x \in[-\frac{\pi}{2}, \frac{\pi}{2}]$, जो है $\sin ^{-1} x$ की मुख्य मूल्य शाखा।
यहां, $\frac{2 \pi}{3} \notin[\frac{-\pi}{2}, \frac{\pi}{2}]$
अब, $\sin ^{-1}(\sin \frac{2 \pi}{3})$ को इस प्रकार लिखा जा सकता है:
$\sin ^{-1}(\sin \frac{2 \pi}{3})=\sin ^{-1}[\sin (\pi-\frac{2 \pi}{3})]=\sin ^{-1}(\sin \frac{\pi}{3})$ where $\frac{\pi}{3} \in[\frac{-\pi}{2}, \frac{\pi}{2}]$
$\therefore \sin ^{-1}(\sin \frac{2 \pi}{3})=\sin ^{-1}(\sin \frac{\pi}{3})=\frac{\pi}{3}$
======
Inverse Trigonometric Functions
#### Question
**11.** $\tan ^{-1}(\tan \frac{3 \pi}{4})$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
We know that $\tan ^{-1}(\tan x)=x$ if $x \in(-\frac{\pi}{2}, \frac{\pi}{2})$, which is the principal value branch of $\tan ^{-1} x$.
Here, $\frac{3 \pi}{4} \notin(\frac{-\pi}{2}, \frac{\pi}{2})$.
Now, $\tan ^{-1}(\tan \frac{3 \pi}{4})$ can be written as:
$\tan ^{-1}(\tan \frac{3 \pi}{4})=\tan ^{-1}[-\tan (\frac{-3 \pi}{4})]=\tan ^{-1}[-\tan (\pi-\frac{\pi}{4})]$
$=\tan ^{-1}[-\tan \frac{\pi}{4}]=\tan ^{-1}[\tan (-\frac{\pi}{4})]$ where $-\frac{\pi}{4} \in(\frac{-\pi}{2}, \frac{\pi}{2})$
$
\therefore \tan ^{-1}(\tan \frac{3 \pi}{4})=\tan ^{-1}[\tan (\frac{-\pi}{4})]=\frac{-\pi}{4}
$
**उत्तर**
हम जानते हैं कि $\tan ^{-1}(\tan x)=x$ यदि $x \in(-\frac{\pi}{2}, \frac{\pi}{2})$, जो है $\tan ^{-1} x$ की मुख्य मूल्य शाखा।
यहां, $\frac{3 \pi}{4} \notin(\frac{-\pi}{2}, \frac{\pi}{2})$.
अब, $\tan ^{-1}(\tan \frac{3 \pi}{4})$ को इस प्रकार लिखा जा सकता है:
$\tan ^{-1}(\tan \frac{3 \pi}{4})=\tan ^{-1}[-\tan (\frac{-3 \pi}{4})]=\ tan ^{-1}[-\tan (\pi-\frac{\pi}{4})]$
$=\tan ^{-1}[-\tan \frac{\pi}{4}]=\tan ^{-1}[\tan (-\frac{\pi}{4})]$ जहां $ -\frac{\pi}{4} \in(\frac{-\pi}{2}, \frac{\pi}{2})$
$
\therefore \tan ^{-1}(\tan \frac{3 \pi}{4})=\tan ^{-1}[\tan (\frac{-\pi}{4})]=\frac{-\pi}{4}
$
======
Inverse Trigonometric Functions
#### Question
**12.** $\tan (\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2})$
**Answer**
Let $\sin ^{-1} \frac{3}{5}=x$. Then, $\sin x=\frac{3}{5} \Rightarrow \cos x=\sqrt{1-\sin ^{2} x}=\frac{4}{5} \Rightarrow \sec x=\frac{5}{4}$.
$\therefore \tan x=\sqrt{\sec ^{2} x-1}=\sqrt{\frac{25}{16}-1}=\frac{3}{4}$
$\therefore x=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
Now, $\cot ^{-1} \frac{3}{2}=\tan ^{-1} \frac{2}{3}$
...(ii) $\quad[\tan ^{-1} \frac{1}{x}=\cot ^{-1} x]$
**12.** $\tan (\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2})$
**उत्तर**
मान लीजिए $\sin ^{-1} \frac{3}{5}=x$. फिर, $\sin x=\frac{3}{5} \Rightarrow \cos x=\sqrt{1-\sin ^{2} x}=\frac{4}{5} \Rightarrow \sec x=\frac{5}{4}$.
$\therefore \tan x=\sqrt{\sec ^{2} x-1}=\sqrt{\frac{25}{16}-1}=\frac{3}{4}$
$\therefore x=\tan ^{-1} \frac{3}{4}$
$\therefore \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4}$
अब, $\cot ^{-1} \frac{3}{2}=\tan ^{-1} \frac{2}{3}$
...(ii) $\quad[\tan ^{-1} \frac{1}{x}=\cot ^{-1} x]$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
Hence, $\tan (\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2})$
$=\tan (\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3})$
$=\tan (\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}})$
$[\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}]$
$=\tan (\tan ^{-1} \frac{9+8}{12-6})$
$=\tan (\tan ^{-1} \frac{17}{6})=\frac{17}{6}$
======
Inverse Trigonometric Functions
#### Question
**13.** $\cos ^{-1}(\cos \frac{7 \pi}{6})$ is equal to
(A) $\frac{7 \pi}{6}$ $\newline$
(B) $\frac{5 \pi}{6}$ $\newline$
(C) $\frac{\pi}{3}$ $\newline$
(D) $\frac{\pi}{6}$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
We know that $\cos ^{-1}(\cos x)=x$ if $x \in[0, \pi]$, which is the principal value branch of cos ${ }^{-1} x$.
Here, $\frac{7 \pi}{6} \notin x \in[0, \pi]$.
Now, $\cos ^{-1}(\cos \frac{7 \pi}{6})$ can be written as:
$\cos ^{-1}(\cos \frac{7 \pi}{6})=\cos ^{-1}(\cos \frac{-7 \pi}{6})=\cos ^{-1}[\cos (2 \pi-\frac{7 \pi}{6})] \quad[\cos (2 \pi+x)=\cos x]$
$=\cos ^{-1}[\cos \frac{5 \pi}{6}]$ where $\frac{5 \pi}{6} \in[0, \pi]$
$\therefore \cos ^{-1}(\cos \frac{7 \pi}{6})=\cos ^{-1}(\cos \frac{5 \pi}{6})=\frac{5 \pi}{6}$
The correct answer is $B$.
**उत्तर**
हम जानते हैं कि $\cos ^{-1}(\cos x)=x$ यदि $x \in[0, \pi]$, जो कि cos ${ }^{-1} x$ की प्रमुख मूल्य शाखा है .
यहां, $\frac{7 \pi}{6} \notin x \in[0, \pi]$.
अब, $\cos ^{-1}(\cos \frac{7 \pi}{6})$ को इस प्रकार लिखा जा सकता है:
$\cos ^{-1}(\cos \frac{7 \pi}{6})=\cos ^{-1}(\cos \frac{-7 \pi}{6})=\cos ^{ -1}[\cos (2 \pi-\frac{7 \pi}{6})] \quad[\cos (2 \pi+x)=\cos x]$
$=\cos ^{-1}[\cos \frac{5 \pi}{6}]$ जहां $\frac{5 \pi}{6} \in[0, \pi]$
$\therefore \cos ^{-1}(\cos \frac{7 \pi}{6})=\cos ^{-1}(\cos \frac{5 \pi}{6})=\frac{5 \pi}{6}$
सही उत्तर $B$ है।
======
Inverse Trigonometric Functions
#### Question
**14.** $\sin (\frac{\pi}{3}-\sin ^{-1}(-\frac{1}{2}))$ is equal to
(A) $\frac{1}{2}$ $\newline$
(B) $\frac{1}{3}$ $\newline$
(C) $\frac{1}{4}$ $\newline$
(D) 1
======
Inverse Trigonometric Functions
#### Answer
**Answer**
Let $\sin ^{-1}(\frac{-1}{2})=x$. Then, $\sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin (\frac{-\pi}{6})$.
We know that the range of the principal value branch of
$
\sin ^{-1} \text{ is }[\frac{-\pi}{2}, \frac{\pi}{2}] \text{. }
$
$
\begin{aligned}
& \sin ^{-1}(\frac{-1}{2})=\frac{-\pi}{6} \\\\
& \therefore \sin (\frac{\pi}{3}-\sin ^{-1}(\frac{-1}{2}))\\\\
&=\sin (\frac{\pi}{3}+\frac{\pi}{6})=\sin (\frac{3 \pi}{6})=\sin (\frac{\pi}{2})=1
\end{aligned}
$
The correct answer is D.
**उत्तर**
मान लीजिए $\sin ^{-1}(\frac{-1}{2})=x$. फिर, $\sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}=\sin (\frac{-\pi}{6})$.
हम जानते हैं कि प्रमुख मूल्य शाखा की सीमा
$
\sin ^{-1} \text{ है }[\frac{-\pi}{2}, \frac{\pi}{2}] \text{. }
$
$
\begin{aligned}
& \sin ^{-1}(\frac{-1}{2})=\frac{-\pi}{6} \\\\
& \therefore \sin (\frac{\pi}{3}-\sin ^{-1}(\frac{-1}{2}))\\\\
&=\sin (\frac{\pi}{3}+\frac{\pi}{6})=\sin (\frac{3 \pi}{6})=\sin (\frac{\pi}{2})=1
\end{aligned}
$
सही उत्तर है डी.
======
Inverse Trigonometric Functions
#### Question
**15.** $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(A) $\pi$ $\newline$
(B) $-\frac{\pi}{2}$ $\newline$
(C) 0 $\newline$
(D) $2 \sqrt{3}$
======
Inverse Trigonometric Functions
#### Answer
**Answer**
B
======
Inverse Trigonometric Functions
#### Question
======
Inverse Trigonometric Functions
#### Answer
**Answer**
======
#### Don't forget to:
- Register yourself and give subject-wise mock test.
👉 https://jeetest.prutor.ai/
- Register yourself and ask any doubt regarding these video lectures or any subject doubt.
👉 https://satheeqrcode.web.app/
- Here you can find "how to videos"
👉 https://www.youtube.com/watch?v=MT3b32wKnmU
- अपना रजिस्ट्रेशन करें और विषयवार मॉक टेस्ट दें।
👉 https://jeetest.prutor.ai/
- स्वयं को पंजीकृत करें और इन वीडियो व्याख्यानों के संबंध में कोई संदेह या किसी विषय पर संदेह पूछें।
👉 https://satheeqrcode.web.app/
- यहां आप "पंजीकरण कैसे करें" पा सकते हैं -
👉 https://www.youtube.com/watch?v=MT3b32wKnmU
======
$\quad$
$\quad$
$\quad$
### Thank you