Shortcut Methods

JEE Main & JEE Advanced & CBSE Board Numerical Examples

JEE Main & JEE Advanced Numerical Examples -

1. Mass defect =(16.000 u15.995 u)=0.005 u Then, Energy equivalent of mass defect ΔE=(0.005u)(931.5MeV/u)=4.66 MeV

2. Binding energy per nucleon =Binding energyNumber of nucleon =(92.16MeV/12nucleons)=7.68 MeV

3. The most stable isobar has N/Z ≈1. Therefore, neutrons to be added or removed: NstableNinitial=140100×11.4 =14071.43=68.57 Thus, 69 neutrons must be removed.

4. Let M and V be the mass and speed of the daughter nucleus, and m and v be those of the alpha particle. Then, momentum conservation: (1)Mv=mvMm=vV

Kinetic energy conservation: 12Mv2=12mv2+5MeV (2)(Mm)v2=10MeV

Substituting (1) in (2): (Mm)(Mm)=10MeVvM2M=10MeVv

M=12±14+10MeVv V=vM=12±14+10MeVv4v

With v=2×10^7ms−1, we find V=4.2×10^6 ms−1 and 1/V = 0.24×10^{−6} m=2.4×10^{−15} m.

5. Difference in mass =Δm=1.0078u1.0087u=0.0009u ΔE=(Δm)(931.5 MeV/u)=0.84 MeV

6. Decay constant λ=0.693t1/2=0.69312h=5.78×103h1 Activity(A)=λN=5.78×103h1×NAgmol1×1ggmol×6.022×1023atom gmol A=3.49×1021Bq

7.

  1. ( ^{238}U \rightarrow ^{234}Th+ ^4He + Q_1)
  2. ( ^{234}Th \rightarrow ^{234}Pa + \beta^-+Q_2)
  3. ( ^{234}Pa \rightarrow ^{234}U + \beta^-+Q_3)
  4. ( ^{234}U \rightarrow ^{230}Th+ ^4He + Q_4)
  5. ( ^{230}Th \rightarrow ^{226}Ra + \alpha + Q_5) Total Q=Q1+Q2+Q3+Q4+Q5=51.7 MeV

CBSE Board Exam Numerical Examples -

1. Mass of ( ^4He ) nucleus in amu Binding energy per nucleon =7.07 MeV=Binding energy4nucleon Binding energy of ( ^4He) nucleus =7.07MeV×4=28.28MeV Mass defect=Binding energy931.5MeV=28.28MeV931.5=0.0304amu Therefore, mass of ( ^4He) nucleus =40.0304=3.9696amu

2. Nuclear density =Mass of the nucleusVolume of the nucleus Assuming nuclei are spherical their volume V=43πr3 Also r=RA1/3 (where A is the mass of the nucleus and R is a constant) Nuclear density=Mass of the nucleus43πR3A ρHeρC=AHeAC(rC)3(rHe)3 =412(R121/3)3(R41/3)3 =412×(121/3)3(41/3)3 =3

similarly ρHeρU=4238(R2381/3)3(R41/3)3 =4238×(2381/3)3(41/3)3 =7.8

3. Radioactive decay constant (\lambda = \frac{0.693}{t_{1/2}} = \frac{0.693}{5730 \ y} = 1.21\times 10^{-4} y^{-1}Activity (A) = \lambda N = 1.21\times 10^{-4} y^{-1} \times \frac{N_A}{gmol^{-1}} \times \frac{1g}{gmol} \times 6.022 \times 10^{23} atom \ g^{mol}= 7.3\times 10^{18} Bq$$

4. Remaining activity after 12 hours,
At=A0eλt A12=(10.0 mCi)(e(6.0h1)(12h)) =7.38mCi Remaining activity after 24 hours, A24=(10.0 mCi)(e(6.0h1)(24h)) =5.54mCi

5. Number of ( ^{235}U ) atoms N=(0.72g1000g)×(1g)×(1 mole235g)×(6.022×1023atoms mole1) =1.86×1020

t1/2=7.04×108 years=7.04×108×365×24×60×60s=2.21×1017s

Total Activity A=λN =0.6932.21×1017s×(1.86×1020) =5.53×102Bq=5.53×102Ci