Shortcut Methods

Typical Numericals on Problem-Solving: Simple Harmonic Motion JEE Main Exam:

  1. A mass-spring system:
  • a) Amplitude: 0.1 m
  • b) Angular frequency: 10 rad/s
  • c) Maximum velocity: 0.1 m/s
  1. A simple pendulum:
  • a) Time period: 2π19.812.01 s
  • b) Maximum angular velocity: ωmax=glsinθ0=9.811sin100.174 rad/s
  • c) Maximum potential energy: Umax=mgl(1cosθ0)=1×9.81×1(1cos10)0.173 J
  1. Particle in SHM:
  • a) Maximum velocity: 2πfA=2π×2×0.2=2.51 m/s
  • b) Maximum acceleration: ω2A=(2πf)2A=(2π×2)2×0.2=31.42 m/s2
  • c) Total energy: E=12kA2=12mω2A2=3.14 J
  1. Block-spring system:
  • a) Time period: T=2πmk=2π2102.83 s
  • b) Angular frequency: ω=km=102=2.24 rad/s
  • c) Maximum velocity: ωA=2.24×0.5=1.12 m/s

CBSE Board Exam:

  1. Mass-spring system:
  • a) Amplitude: 0.2 m
  • b) Time period: 2πmk=2π11000.63 s
  • c) Maximum velocity: Aω=0.2×1001=2 m/s
  1. Simple pendulum:
  • a) Time period: 2πlg=2π29.812.83 s
  • b) Maximum angular velocity: ωmax=glsinθ0=9.812sin150.54 rad/s
  • c) Maximum potential energy: Umax=mgl(1cosθ0)=1×9.81×2(1cos15)1.07 J
  1. Particle in SHM:
  • a) Maximum velocity: 2πfA=2π×5×0.3=9.42 m/s
  • b) Maximum acceleration: ω2A=(2πf)2A=(2π×5)2×0.3=188.50 m/s2
  • c) Total mechanical energy: E=12KA2=12mω2A2=13.88 J
  1. Block-spring system:
  • a) Amplitude: 0.6 m
  • b) Time period: T=2πmk=2π4201.88 s
  • c) Maximum velocity: ωA=25×0.61.69 m/s

Note: These are just sample calculations for better understanding. Numerical values may vary based on the actual problem statements and given parameters.



Table of Contents