Shortcut Methods

Typical numerical on Quadratic Equaltions while preparing for JEE & CBSE board exams


  1. SOLUTION: x25x+6=0

Here, (x2)(x3)=0

x=2,3

Ans: Roots = 2, 3


  1. SOLUTION: x24x21=0

Here, (x+3)(x7)=0

x=3,7

Ans: Roots = 7, -3


  1. SOLUTION: x2+kx5=0

By comparing the given equation with the standard quadratic equation ax2+bx+c=0 we get: a=1,b=k, and c=5

Now, for equal roots, we must have: b24ac=0 k24×1×(5)=0 k2+20=0 k2=20

Ans: No reel solution


  1. SOLUTION: Given equations: x2+px+q=0

Comparing with the standard quadratic equation ax2+bx+c=0, we get a=1,b=p, and c=q

Since, α+β=10, αβ=24

Thus applying Vieta’s relation, we have α+β=ba10=p1 p=10

αβ=ca24=q1 q=24

Ans: p = -10 and q = 24


  1. SOLUTION: (x1)(x+3)=12 x2+3xx3=12 x2+2x312=0 x2+2x15=0

Here, (x+5)(x3)=0

x=5,3

Ans: Roots = 3 , -5


  1. SOLUTION: 2x2+mx+1=0 D=b24ac =m24×2×1 =m28

for reel and distinct roots D>0 i.e. m28>0 (m22)(m+22)>0 m>22 or m<22

Ans: m>22


  1. SOLUTION: Given points are: (1,4),(2,11),(3,20)

Let the equation of the parabola be y=ax2+bx+c

Substituting the values of the points, we get 4 = a + b + c ….. (i) 11 = 4a + 2b + c ….. (ii) 20 = 9a + 3b + c ….. (iii)

Subtracting (i) from (ii), we get 7=3a+b 3a+b=7..(iv)

Subtracting (ii) from (iii), we get 9 = 5a + b 5a+b=9..(v)

Subtracting (v) from (iv), we get 2a=2 a=1

Substituting the value of a in (iv) we get

3a+b=7 3×1+b=7 3+b=7 b=4

Substituting the values of a and b in (i) we get 4 = a + b + c 4=1+4+c c=1

$$Equation of the parabola:y=x2+4x1


  1. SOLUTION: Given equations: (ab)x2+(bc)x+(ca)=0

Comparing with the standard quadratic equation ax2+bx+c=0 we get: a=ab,b=bc, and c=ca

Sum of roots: α+β=ba=(bc)ab=cbba =(ab)(cb)ab =acab

Ans: ac


  1. SOLUTION: Given equation: (p+q)x2+(q+r)x+(r+p)=0

Comparing with the standard quadratic equation we get: a=p+q,b=q+r,a and c=r+p

Product of Roots: αβ=ca=r+pp+q

Ans: (r+p)/(p+q)


  1. SOLUTION: x42x2+1=0

Substituting x2=y we get y22y+1=0

This is a standard quadratic equation.

y=2±44×1×12×1 =2±02 =1

Substituting y=x2 we get x2=1 x=±1

Ans: x=±1