Shortcut Methods
Inverse Trigonometric Functions
- The inverse trigonometric functions are:
$$\sin^{-1}x:[-1,1]\to [-\frac{\pi}{2},\frac{\pi}{2}]$$ $$\cos^{-1}x:[-1,1]\to [0,\pi]$$ $$\tan^{-1}x:\text{All real numbers}\to (-\frac{\pi}{2},\frac{\pi}{2})$$
- The derivatives of the inverse trigonometric functions are:
$$\frac{d}{dx} \sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$ $$\frac{d}{dx} \cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$ $$\frac{d}{dx} \tan^{-1}x = \frac{1}{1+x^2}$$
- The integrals of the inverse trigonometric functions are:
$$\int \sin^{-1}x dx = x\sin^{-1}x - \sqrt{1-x^2}$$ $$\int \cos^{-1}x dx = x \cos^{-1}x - \sqrt{1-x^2}$$ $$\int \tan^{-1}x dx = x\tan^{-1}x - \frac{1}{2}\ln(1+x^2)$$
- The inverse trigonometric functions can be used to solve a variety of equations, including:
$$\sin^{-1}x = y$$ $$\cos^{-1}x = y$$ $$\tan^{-1}x = y$$
Typical Numericals
- Find the value of $\sin^{-1}\frac{1}{2}$.
Solution $$\sin^{-1}\frac{1}{2}=\frac{\pi}{6}$$
- Find the value of $\cos^{-1}\frac{\sqrt{3}}{2}$.
Solution $$\cos^{-1}\frac{\sqrt{3}}{2}=\frac{\pi}{3}$$
- Find the value of $\tan^{-1}1$.
Solution $$\tan^{-1}1=\frac{\pi}{4}$$
- Solve the equation $\sin^{-1}x = \frac{\pi}{3}$.
Solution $$x = \frac{\sqrt{3}}{2}$$
- Solve the equation $\cos^{-1}x = \frac{\pi}{4}$.
Solution $$x = \frac{1}{\sqrt{2}}$$
- Solve the equation $\tan^{-1}x = \frac{\pi}{6}$.
Solution $$x = \frac{1}{\sqrt{3}}$$
- Find the derivative of $\sin^{-1}x$.
Solution $$\frac{d}{dx} \sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$
- Find the derivative of $\cos^{-1}x$.
Solution $$\frac{d}{dx} \cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$
- Find the derivative of $\tan^{-1}x$.
Solution $$\frac{d}{dx} \tan^{-1}x = \frac{1}{1+x^2}$$
- Find the integral of $\sin^{-1}x$.
Solution $$\int \sin^{-1}x dx = x\sin^{-1}x - \sqrt{1-x^2}$$
- Find the integral of $\cos^{-1}x$.
Solution $$\int \cos^{-1}x dx = x \cos^{-1}x - \sqrt{1-x^2}$$
- Find the integral of $\tan^{-1}x$.
Solution $$\int \tan^{-1}x dx = x\tan^{-1}x - \frac{1}{2}\ln(1+x^2)$$