Shortcut Methods

Inverse Trigonometric Functions

  • The inverse trigonometric functions are:

sin1x:[1,1][π2,π2] cos1x:[1,1][0,π] tan1x:All real numbers(π2,π2)

  • The derivatives of the inverse trigonometric functions are:

ddxsin1x=11x2 ddxcos1x=11x2 ddxtan1x=11+x2

  • The integrals of the inverse trigonometric functions are:

sin1xdx=xsin1x1x2 cos1xdx=xcos1x1x2 tan1xdx=xtan1x12ln(1+x2)

  • The inverse trigonometric functions can be used to solve a variety of equations, including:

sin1x=y cos1x=y tan1x=y

Typical Numericals

  • Find the value of sin112.

Solution sin112=π6

  • Find the value of cos132.

Solution cos132=π3

  • Find the value of tan11.

Solution tan11=π4

  • Solve the equation sin1x=π3.

Solution x=32

  • Solve the equation cos1x=π4.

Solution x=12

  • Solve the equation tan1x=π6.

Solution x=13

  • Find the derivative of sin1x.

Solution ddxsin1x=11x2

  • Find the derivative of cos1x.

Solution ddxcos1x=11x2

  • Find the derivative of tan1x.

Solution ddxtan1x=11+x2

  • Find the integral of sin1x.

Solution sin1xdx=xsin1x1x2

  • Find the integral of cos1x.

Solution cos1xdx=xcos1x1x2

  • Find the integral of tan1x.

Solution tan1xdx=xtan1x12ln(1+x2)



Table of Contents