Shortcut Methods

JEE Main

  • Modulus of a vector:

|a|=ax2+ay2+az2

  • Unit vectors:

a^=a|a|

i^=i|i|=(1,0,0)

j^=j|j|=(0,1,0)

k^=k|k|=(0,0,1)

  • Direction Cosines:

The direction cosines of a vector (\vec{a}) with respect to the positive x-axis, y-axis, and z-axis respectively are: cosα=ax|a|,cosβ=ay|a|,cosγ=az|a|

where (a_{x}), (a_{y}), and (a_{z}) are the components of the vector in the x, y, and z directions, respectively.

  • Addition of vectors:

a+b=(ax+bx)i^+(ay+by)j^+(az+bz)k^

  • Subtraction of vectors:

ab=(axbx)i^+(ayby)j^+(azbz)k^

  • Scalar product of vectors:

ab=axbx+ayby+azbz

  • Vector product of vectors:

a×b=|ij^k^axayazbxbybz|=(aybzazby)i^+(azbxaxbz)j^+(axbyaybx)k^

  • Angle between two vectors:

θ=cos1(ab|a||b|)

CBSE Board Exam

  • Modulus of a vector: |a|=a12+a22+a32

  • Unit vector: a^=a|a|

  • Direction cosines: cosα=a1|a|,cosβ=a2|a|,cosγ=a3|a|

  • Addition of vectors: a+b=(a1+b1)i^+(a2+b2)j^+(a3+b3)k^

  • Subtraction of vectors: ab=(a1b1)i^+(a2b2)j^+(a3b3)k^

  • Scalar product of vectors: ab=a1b1+a2b2+a3b3

  • Angle between two vectors: θ=cos1(ab|a| |b|)α



Table of Contents