Shortcut Methods

Numerical of Indefinite Integral

  • Power Rule: $$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$ for any real number (n \neq -1).

  • Sum Rule: $$\int (f(x) + g(x)) dx = \int f(x) dx+ \int g(x) dx $$

  • Difference Rule: $$\int (f(x) - g(x)) dx = \int f(x) dx- \int g(x) dx$$

  • Constant Multiple Rule: $$\int c f(x) dx = c \int f(x) dx$$

  • Substitution Rule: If (u = g(x)) is a differentiable function, then $$\int f(g(x)) g’(x) dx = \int f(u) du $$

  • Logarithmic rule: $$\int{\frac{1}{x}dx} = \ln{|x|}+C, (x \neq 0)$$

  • Exponential Rule: $$\int e^x dx = e^x + C$$

Numerical of Definite Integral

$$\int_{a}^{b} f(x) dx = F(b) - F(a),$$

where (F(x)) is an antiderivative of (f(x)) (i.e. (\frac{d}{dx}F(x) = f(x))).

Applications of Integral Calculus

  • Area under a curve: $$Area = \int_{a}^{b} f(x) dx$$

  • Volume of a solid generated by revolving a region around an axis: $$Volume = \int_{a}^{b} A(x) dx,$$

where (A(x)) is the area of the cross-section of the solid at (x).

  • Work done by a force: $$Work = \int_{a}^{b} F(x) dx,$$

where (F(x)) is the force applied at the point (x).

  • Average value of a function: $$Average value = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

  • Probability: $$Probability = \int_{a}^{b} f(x) dx,$$

where (f(x)) is the probability density function of the random variable (X).