Shortcut Methods

JEE Main:

  • Cylindrical Capacitor

    • Formula: C=2πε0Lln(b/a) where,

      • C is the capacitance
      • ε0 is the permittivity of free space (ε0=8.85×1012 C2/Nm2)
      • L is the length of the capacitor
      • a is the radius of the inner cylinder
      • b is the radius of the outer cylinder
    • Given values: L=50 cm=0.5 m, a=5 cm=0.05 m, b=10 cm=0.1 m, Vin=100 V, Vout=200 V

    • Substituting the values in the formula: C=2π×8.85×1012×0.5ln(0.1/0.05)=2.95×1011 F

  • Spherical Capacitors in Parallel

    • Formula: Ctotal=C1+C2 where,

      • Ctotal is the total capacitance of the parallel combination
      • C1 and C2 are the capacitances of the individual capacitors
    • Given values: R1=R2=10 cm=0.1 m, d=20 cm=0.2 m, V=100 V

    • First, we need to calculate the capacitance of each individual capacitor using the formula: C=4πε0Rd Substituting the values: C1=C2=4π×8.85×1012×0.10.2=1.77×1011 F

    • Now, we can calculate the total capacitance: Ctotal=1.77×1011+1.77×1011=3.54×1011 F

  • Cylindrical Capacitor

    • Formula: C=2πε0Lln(b/a) where,

      • C is the capacitance
      • ε0 is the permittivity of free space (ε0=8.85×1012 C2/Nm2)
      • L is the length of the capacitor
      • a is the radius of the inner cylinder
      • b is the radius of the outer cylinder
    • Given values: L=10 cm=0.1 m, a=2 cm=0.02 m, b=5 cm=0.05 m, Vin=0 V, Vout=100 V

    • Substituting the values in the formula: C=2π×8.85×1012×0.1ln(0.05/0.02)=1.01×1010 F

CBSE Board:

  • Cylindrical Capacitor

    • Formula: C=2πε0Lln(b/a) where,

      • C is the capacitance
      • ε0 is the permittivity of free space (ε0=8.85×1012 C2/Nm2)
      • L is the length of the capacitor
      • a is the radius of the inner cylinder
      • b is the radius of the outer cylinder
    • Given values: L=20 cm=0.2 m, a=2 cm=0.02 m, b=4 cm=0.04 m, Vin=50 V, Vout=100 V

    • Substituting the values in the formula: C=2π×8.85×1012×0.2ln(0.04/0.02)=1.59×1011 F

  • Spherical Capacitors in Series

    • Formula: 1Ctotal=1C1+1C2 where,

      • Ctotal is the total capacitance of the series combination
      • C1 and C2 are the capacitances of the individual capacitors
    • Given values: R1=R2=5 cm=0.05 m, d=10 cm=0.1 m, V=100 V

    • First, we need to calculate the capacitance of each individual capacitor using the formula: C=4πε0Rd Substituting the values: C1=C2=4π×8.85×1012×0.050.1=1.77×1011 F

    • Now, we can calculate the total capacitance: 1Ctotal=11.77×1011+11.77×1011 Ctotal=0.885×1011 F

  • Spherical Capacitor

    • Formula: C=4πε0Rd where,

      • C is the capacitance
      • ε0 is the permittivity of free space (ε0=8.85×1012 C2/Nm2)
      • R is the radius of the sphere
      • d is the distance between the sphere and the outer grounded conductor
    • Given values: R=10 cm=0.1 m, d=

    • Since the outer conductor is grounded, the distance d can be considered infinite. Therefore, the capacitance becomes: C=4πε0R=0

    • Hence, the capacitance of the spherical capacitor is 0 F.



Table of Contents