Chemistry Of P-Block Elementsgroup13 Topic

JEE Main & Advanced Numericals

  1. Atomic radius of boron: V=md

V=10.81 g/mol2.34 g/cm3

V=4.62 cm3/mol

r=(3V4πNA)13

r=(3×4.62 cm3/mol4π×6.022×1023 mol1)13

r=0.88×108 cm

Atomic radius of boron = 88 pm

  1. Ionization energy of gallium:

IEGa=IEAl+ΔIE

IEGa=577 kJ/mol+165 kJ/mol

Ionization energy of gallium = 742 kJ/mol

  1. Electronegativity of indium:

χIn=χTlΔχ

χIn=1.620.45

Electronegativity of indium = 1.17

  1. Melting point of thallium: The melting points of aluminum, indium, and thallium follow a linear trend. Let’s assume the linear equation is:

Tm=mx+b

where (T_\text{m}) is the melting point, (x) is the atomic number, and (m) and (b) are constants. Using the given data, we can create two equations:

(1)660=m(13)+b

(2)156=m(49)+b

Subtracting equation (1) from equation (2), we get:

504=m(36)

m=14 °C

Substituting (m) back into equation (1), we get:

660=14(13)+b

b=482 °C

Now we can use the equation to calculate the melting point of thallium (atomic number 81):

Tm=14(81)+482

Tm=1694 °C

Melting point of thallium = 1694 °C

  1. Boiling point of gallium: The boiling points of aluminum, indium, and gallium follow a linear trend. Let’s assume the linear equation is:

Tb=mx+b

where (T_\text{b}) is the boiling point, (x) is the atomic number, and (m) and (b) are constants.

Using the given data, we can create two equations:

(1)2467=m(13)+b (2)2072=m(49)+b

Subtracting equation (1) from equation (2), we get:

395=m(36)

m=11 °C

Substituting (m) back into equation (1), we get:

2467=11(13)+b

b=2224 °C

Now we can use the equation to calculate the boiling point of gallium (atomic number 31):

Tb=11(31)+2224

Tb=2575 °C

Boiling point of gallium = 2575 °C

  1. Standard reduction potential of the Al3+/Al couple: Given, (E^\circ_{Ga3+/Ga} = -0.53 \texttt{V}) and (\Delta E^\circ = 0.29 \texttt{V}).

EAl3+/Al=EGa3+/GaΔE

EAl3+/Al=0.53V0.29V

Standard reduction potential of the Al3+/Al couple = -0.82 V

  1. Solubility product constant (Ksp) of In(OH)3: Given, (K_\text{sp,Al(OH)3} = 1.9 \times 10^{-31}) and (\Delta \log K_\text{sp} = 1.5 \times 10^{-31}).

logKsp,In(OH)3=logKsp,Al(OH)3+ΔlogKsp

logKsp,In(OH)3=30.72+1.5×1031

Ksp,In(OH)3=1.9×1031×101.5×1031

Solubility product constant of In(OH)3 = 1.98 × 10^⁻³¹

CBSE Board Exam Numericals

  1. Atomic mass of boron: The average atomic mass of boron is: Mavg=0.199×10.01 g/mol+0.801×11.01 g/mol Mavg=10.81 g/mol

Atomic mass of boron = 10.81 g/mol

  1. Mass of aluminum produced:

First, calculate the number of moles of Al2O3:

nAl2O3=100 g101.96 g/mol=0.98 mol

Assuming 100% current efficiency, the number of moles of Al produced would be:

nAl=2×nAl2O3=1.96 mol

However, since the current efficiency is 85%, the actual number of moles of Al produced is: nAl,actual=0.85×1.96 mol=1.67 mol

Finally, calculate the mass of aluminum produced: mAl=nAl,actual×MAl mAl=1.67 mol×26.98 g/mol=45.2 g

Mass of aluminum produced = 45.2 g

  1. Volume of 0.1 M HCl required:

First, calculate the number of moles of In2O3: nIn2O3=1.0 g277.64 g/mol=0.0036 mol

The balanced chemical equation shows that 6 moles of HCl are required for every mole of In2O3. Therefore, the number of moles of HCl required is:

nHCl=6×nIn2O3=0.022 mol

Finally, calculate the volume of 0.1 M HCl required: VHCl=nHClMHCl=0.022 mol0.1 mol/L=0.22 L

Volume of 0.1 M HCl required = 0.22 L

  1. Percentage of indium in the alloy:

First, calculate the number of moles of InCl3 produced: nInCl3=1.34 g221.18 g/mol=0.00606 mol

The balanced chemical equation shows that 1 mole of InCl3 is produced for every mole



Table of Contents