Shortcut Methods

Binomial Theorem Tricks and Shortcuts


Tricks and Shortcuts

1. Binomial Theorem

1. Formula:

(a+b)n=r=0nnCranrbr

  • (n) choose (r), where (n\ge r), or,

nCr=n!r!(nr)!


2. Binomial Coefficients:

nCr=nCnr

nC0=nCn=1

  • If n = 2k, the middle coefficient is

=nCk=(2k)!(k!)22k


##3. Summations/Identities

i=0nnCi=2n

i=0nnCiri=(1+r)n

i=0nnCirni=(1+r)n

  • Product of two Binomials:

(a+b)(c+d)=ac+ad+bc+bd


4. Index Rule

  • Sum of indices of (x) and (y) in any term of the expansion of ((x + y)^n) = n

5. Properties of the middle term:

  • The middle term(s) of the expansion of ((a + b)^n):

    • when n is even: there will be two middle terms, that are, ((^{n/2}C_{n/2-1}a^{n/2}b^{n/2-1})) and (n/2Cn/2an/21bn/2)

    • when n is odd: there will be one middle term, i.e., n/2Cn/2a(n1)/2b(n+1)/2


6. Last term

  • The last term of the expansion of ((a+b)^n) = (ab^n)

7. General Term:

  • The ((r+1))th term in the expansion of ((a + b)^n): Tr+1nCranrbr

Practice Problems


1. If the middle term in the expansion of ((x + \frac {a}{x})^n) is 12870, then find n.

Solution:

Using the middle term property for the binomial expansion, Tn2+1=nCn21xnn2+1(ax)n21

Rightarrow 12870=nCn21xn2+1an21

Rightarrow12870=n!(n21)!(n2+1)!x2an21

Here we can substitute (n = 12) to satisfy the given equation.

Thus, the value of n is 12.


2. If the first, third, and sixth terms of a binomial expansion are a, b, and c respectively, then find the 9th term.

Solution: General term of a binomial expansion:

Tr+1=nCranrbr

Given:

  • (T_1 = a = {}^nC_0a^n)

  • (T_3 = b = {}^nC_2a^{n-2}b^2)

  • (T_6 = c = {}^nC_5a^{n-5}b^5)

  • (T_9=?)

  • From T3=nC2an2b2=b

Rightarrowb=nC2an2b2

 b2an2=nC2=n(n1)2

  • Similarly from T6=nC5an5b5=c

We get,

 c5an5b5=nC5=n(n1)(n2)(n3)(n4)5!

Dividing Equation 2 by Equation 1:

c5an5b5b2an2=n(n1)(n2)(n3)(n4)5!2n(n1)

c5b2a3a3b8=2(n2)(n3)(n4)5!

 c=2(n2)(n3)(n4)5!b=2×(n2)(n3)(n4)32!b(1)

Again from Equation 1,

b2an2=n(n1)2

 an2=2b2n(n1)

 a3=2b3n(n1)

 a=2b3n(n1)3

Substituting the value of (a) in Equation (1), we get (9)th term,

T9=nC8an8b8 =nC8(2b3n(n1)3)n8b8

Substituting the value of ({}^nC_8) from the property

nC8=nCn8=n!(n8)!8!=n(n1)(n2)(n3)(n4)(n5)(n6)(n7)8!

T9=n(n1)(n2)(n3)(n4)(n5)(n6)(n7)8!(2b3n(n1)3)n8b8

Simplifying, we get

T9=(n2)(n3)(n4)(n5)(n6)(n7)3×4!b5=(n2)(n3)(n4)(n5)(n6)(n7)b572


3. Given that the binomial expansion of ((3x^2 – \frac {1}{2x})^n) contains twelve terms. Find the sum of all possible products of the exponents of (x) in any term.

Solution:

Binomial expansion of ((3x^2 - \frac {1} {2x})^n):

(3x212x)n=r=0nnCr(3x2)nr(12x)r

=r=0nnCr3nr(1)rx2n2rr2r

By the given condition,

2n2rr=11r=133N

Which implies that n must be a fraction (not an integer)! This means that the given expansion doesn’t exists as a finite binomial expansion. The expansion