Shortcut Methods
Binomial Theorem Tricks and Shortcuts
Tricks and Shortcuts
1. Binomial Theorem
1. Formula:
$$(a+b)^n=\sum_{r=0}^n {}^nC_r a^{n-r}b^{r}$$
- (n) choose (r), where (n\ge r), or,
$${}^n C_r=\frac{n!}{r!(n-r)!}$$
2. Binomial Coefficients:
$${}^nC_r= {}^nC_{n-r} $$
$${}^nC_0 = {}^nC_n=1$$
- If n = 2k, the middle coefficient is
$$= ^{n}C_{k} = \frac {(2k)!} {(k!)^2 *2^{k}}$$
##3. Summations/Identities
$$\sum_{i=0}^n {}^nC_i = 2^n$$
$$\sum_{i=0}^n {}^nC_i r^i = (1+r)^n$$
$$\sum_{i=0}^n{}^nC_ir^{n-i}=(1+r)^n$$
- Product of two Binomials:
$$ (a+b)(c+d) = ac+ad+bc+bd $$
4. Index Rule
- Sum of indices of (x) and (y) in any term of the expansion of ((x + y)^n) = n
5. Properties of the middle term:
-
The middle term(s) of the expansion of ((a + b)^n):
-
when n is even: there will be two middle terms, that are, ((^{n/2}C_{n/2-1}a^{n/2}b^{n/2-1})) and $$({}^{n/2}C_{n/2}a^{n/2-1}b^{n/2})$$
-
when n is odd: there will be one middle term, i.e., $$^{n/2}C_{n/2}a^{(n-1)/2}b^{(n+1)/2}$$
-
6. Last term
- The last term of the expansion of ((a+b)^n) = (ab^n)
7. General Term:
- The ((r+1))th term in the expansion of ((a + b)^n): $$ T_{r+1} {}^nC_r a^{n-r} b^r$$
Practice Problems
1. If the middle term in the expansion of ((x + \frac {a}{x})^n) is 12870, then find n.
Solution:
Using the middle term property for the binomial expansion, $$T_{\frac {n}{2}+1}= {}^{n} C_{\frac {n} {2}-1}x^{n-{n \over 2}+1}\left ( \frac{a}{x} \right )^{\frac {n}{2}-1}$$
$$Rightarrow \space 12870 = {}^n C_{ {n \over 2}-1} x^{{n \over 2}+1} a^{ {n \over 2}-1}$$
$$Rightarrow 12870= \frac {n!} {{({n \over 2}-1)!({n \over 2}+1)!} } x^2 a^{n \over 2}-1 $$
Here we can substitute (n = 12) to satisfy the given equation.
Thus, the value of n is 12.
2. If the first, third, and sixth terms of a binomial expansion are a, b, and c respectively, then find the 9th term.
Solution: General term of a binomial expansion:
$$T_{r+1} = {}^nC_r a^{n-r}b^r$$
Given:
-
(T_1 = a = {}^nC_0a^n)
-
(T_3 = b = {}^nC_2a^{n-2}b^2)
-
(T_6 = c = {}^nC_5a^{n-5}b^5)
-
(T_9=?)
-
From $$T_3 = {}^nC_2a^{n-2}b^2 = b$$
$$Rightarrow b= {}^nC_2a^{n-2}b^2$$
$$ \Rightarrow \space \frac {b^2}{a^{n-2}} = {}^nC_2 = \frac {n(n-1)}{2}$$
- Similarly from $$T_6 = {}^nC_5 a^{n-5}b^5= c$$
We get,
$$\Rightarrow \space \frac {c^5}{a^{n-5}b^5} = {}^nC_5 = \frac {n(n-1)(n-2)(n-3)(n-4)}{5!}$$
Dividing Equation 2 by Equation 1:
$$\frac {\frac {c^5}{a^{n-5}b^5}} {\frac {b^2}{a^{n-2}}} =\frac {n(n-1)(n-2)(n-3)(n-4)}{5!}\cdot \frac {2}{n(n-1)}$$
$$ \frac {c^5 b^2 a^3} {a^3 b^8} =\frac {2(n-2)(n-3)(n-4)}{5!}$$
$$\Rightarrow \space c =\frac {2(n-2)(n-3)(n-4)}{5!} b = 2\times \frac {(n-2)(n-3)(n-4)}{3\cdot 2!} b\dots (1)$$
Again from Equation 1,
$$ \frac {b^2}{a^{n-2}} = \frac {n(n-1)}{2}$$
$$ \Rightarrow \space a^{n-2} =\frac {2b^2}{n(n-1)}$$
$$ \Rightarrow \space a^3 = \frac {2b^3}{n(n-1)}$$
$$ \Rightarrow \space a =\sqrt[3]{\frac {2b^3}{n(n-1)}}$$
Substituting the value of (a) in Equation (1), we get (9)th term,
$$T_9 = {}^nC_8 a^{n-8}b^8 $$ $$= {}^nC_8\left (\sqrt[3]{\frac {2b^3}{n(n-1)}} \right )^{n-8}b^8$$
Substituting the value of ({}^nC_8) from the property
$${}^nC_8 = {}^nC_{n-8} = \frac {n!}{(n-8)!8!} = \frac {n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)}{8!}$$
$$T_9 =\frac {n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)}{8!} \left (\sqrt[3]{\frac {2b^3}{n(n-1)}} \right )^{n-8} b^8$$
Simplifying, we get
$$T_9 = \frac {(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)}{3\times 4!} b^5 = \frac {(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)b^5}{72}$$
3. Given that the binomial expansion of ((3x^2 – \frac {1}{2x})^n) contains twelve terms. Find the sum of all possible products of the exponents of (x) in any term.
Solution:
Binomial expansion of ((3x^2 - \frac {1} {2x})^n):
$$(3x^2 - \frac {1} {2x})^n = \sum_{r=0}^n {}^nC_r (3x^2)^{n-r} (-\frac {1} {2x})^r$$
$$= \sum_{r=0}^n {}^nC_r 3^{n-r}(-1)^r x^{2n-2r -r}2^{-r} $$
By the given condition,
$$2n - 2r -r = 11 \Rightarrow r= \frac{13}{3} \notin N$$
Which implies that n must be a fraction (not an integer)! This means that the given expansion doesn’t exists as a finite binomial expansion. The expansion