NEET Solved Paper 2016 Question 45
Question: A car is negotiating a curved road of radius R. The road is banked at an angle $ \theta . $ the coefficient of friction between the tyres of the car and the road is $ {\mu_s}. $ The maximum safe velocity on this road is :-
Options:
A) $ \sqrt{gR^{2}\frac{u _{s}+\tan \theta }{1-{\mu_s}\tan \theta }} $
B) $ \sqrt{gR\frac{u _{s}+\tan \theta }{1-{\mu_s}\tan \theta }} $
C) $ \sqrt{\frac{g}{R}\frac{u _{s}+\tan \theta }{1-{\mu_s}\tan \theta }} $
D) $ \sqrt{\frac{g}{R^{2}}\frac{u _{s}+\tan \theta }{1-{\mu_s}\tan \theta }} $
Show Answer
Answer:
Correct Answer: B
Solution:
$ \frac{v^{2}}{Rg}=( \frac{{\mu_s}+\tan \theta }{1-{\mu_s}\tan \theta } ) $
$ \Rightarrow $ $ v=\sqrt{Rg[ \frac{{\mu_s}+\tan \theta }{1-{\mu_s}\tan \theta } ]} $