Work Energy and Power - Result Question 33

36. A body of mass $1 kg$ begins to move under the action of a time dependent force $\vec{F}=(2 t \hat{i}+3 t^{2} \hat{j}) N$, where $\hat{i}$ and $\hat{j}$ are unit vectors alogn $x$ and $y$-axis. What power will be developed by the force at the time $t$ ? [2016]

(a) $(2 t^{2}+3 t^{3}) W$

(b) $(2 t^{2}+4 t^{4}) W$

(c) $(2 t^{3}+3 t^{4}) W$

(d) $(2 t^{3}+3 t^{5}) W$

Show Answer

Answer:

Correct Answer: 36. (d)

Solution:

  1. (d) Given force $\vec{F}=2 t \hat{i}+3 t^{2} \hat{j}$

According to Newton’s second law of motion,

$m \frac{d \vec{v}}{d t}=2 t \hat{i}+3 t^{2} \hat{j} \quad(m=1 kg)$

$\Rightarrow \int_0^{\vec{v}} d \vec{v}=\int_0^{t}(2 t \hat{i}+3 t^{2} \hat{j}) d t$

$\Rightarrow \vec{v}=t^{2} \hat{i}+t^{3} \hat{j}$

Power $P=\vec{F} \cdot \vec{v}(2 t \hat{i}+3 t^{2} \hat{j}) \cdot(t^{2} \hat{i}+t^{3} \hat{j})$

$=(2 t^{3}+3 t^{5}) W$



NCERT Chapter Video Solution

Dual Pane