Work Energy and Power - Result Question 29

32. Consider a car moving along a straight horizantal road with a speed of $72 km / h$. If the coefficient of static friction between road and tyres is 0.5 , the shortest distance in which the car can be stopped is

[1994]

(a) $30 m$

(b) $40 m$

(c) $72 m$

(d) $20 m$

Show Answer

Answer:

Correct Answer: 32. (b)

Solution:

  1. (b) Force due to friction $=$ kinetic energy

$\mu m g s=\frac{1}{2} m v^{2}$

$[.$ Here, $v=72 km / h=\frac{72000}{60 \times 60}=20 m / s$ ] or , $s=\frac{v^{2}}{2 \mu g}=\frac{20 \times 20}{2 \times 0.5 \times 10}=40 m$

If a body of mass $m$ moves with velocity $u$ on a rough surface and stops after travelling a distance $S$ due to friction. Then, frictional force, $F=ma=$ $\mu R \Rightarrow ma=\mu mg \Rightarrow a=\mu g$

Using $v^{2}=u^{2}-2 a s$

$\Rightarrow 0=u^{2}-2 \mu g S$

$\Rightarrow S=\frac{u^{2}}{2 \mu g}$



NCERT Chapter Video Solution

Dual Pane