Thermal Properties of Matter - Result Question 25

26. The two ends of a rod of length $L$ and a uniform cross-sectional area A are kept at two temperatures $T_1$ and $T_2(T_1>T_2)$. The rate of heat transfer, $\frac{d Q}{d t}$ through the rod in a steady state is given by:

[2009]

(a) $\frac{dQ}{dt}=\frac{k(T_1-T_2)}{LA}$

(b) $\frac{dQ}{dt}=kLA(T_1-T_2)$

(c) $\frac{dQ}{dt}=\frac{kA(T_1-T_2)}{L}$

(d) $\frac{dQ}{dt}=\frac{kL(T_1-T_2)}{A}$

Show Answer

Answer:

Correct Answer: 26. (c)

Solution:

(c) $\frac{d Q}{d t}=\frac{k A(T_1-T_2)}{L}$

[ $(T_1-T_2)$ is the temperature difference $]$

Rate of heat flow is called heat current,

$H=\frac{d Q}{d t}$ and $H=\frac{(T_1-T_2)}{R}$

and thermal resistance, $R=\frac{L}{k A}$



NCERT Chapter Video Solution

Dual Pane