Oscillations - Result Question 30

33. In a simple harmonic motion, when the displacement is one-half the amplitude, what fraction of the total energy is kinetic?

[1996]

(a) 0

(b) $\frac{1}{4}$

(c) $\frac{1}{2}$

(d) $\frac{3}{4}$

Show Answer

Answer:

Correct Answer: 33. (d)

Solution:

  1. (d) Total energy of particle executing S.H.M. of amplitude (A).

$E=\frac{1}{2} m \omega^{2} A^{2}$

K.E.of the particle

$=\frac{1}{2} m \omega^{2}(A^{2}-\frac{A^{2}}{4}) \quad(.$ when $.x=\frac{A}{2})$

$=\frac{1}{2} m \omega^{2} \times \frac{3}{4} A^{2}=\frac{1}{2} \times \frac{3}{4} m \omega^{2} A^{2}$

Clearly, $\frac{KE}{\text{ Total Energy }}=\frac{3}{4}$



NCERT Chapter Video Solution

Dual Pane