Mechanical Properties of Fluids - Result Question 4

4. The approximate depth of an ocean is $2700 m$. The compressibility of water is $45.4 \times 10^{-11} Pa^{-1}$ and density of water is $10^{3} kg / m^{3}$. What fractional compression of water will be obtained at the bottom of the ocean?

(a) $1.0 \times 10^{-2}$

(b) $1.2 \times 10^{-2}$

(c) $1.4 \times 10^{-2}$

(d) $0.8 \times 10^{-2}$

[2015]

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. (b) Compressibility of water,

$K=45.4 \times 10^{-11} Pa^{-1}$

density of water $P=10^{3} kg / m^{3}$

depth of ocean, $h=2700 m$

We have to find $\frac{\Delta V}{V}=$ ?

As we know, compressibility,

$K=\frac{1}{B}=\frac{(\Delta V / V)}{P}(P=\rho gh)$

So, $(\Delta V / V)=K \rho gh$

$=45.4 \times 10^{-11} \times 10^{3} \times 10 \times 2700=1.2258 \times 10^{-2}$



NCERT Chapter Video Solution

Dual Pane