Thermodynamics and Thermochemistry 1 Question 17

20. The combustion of benzene ( $l$ ) gives $\mathrm{CO}{2}(g)$ and $\mathrm{H}{2} \mathrm{O}(l)$. Given that heat of combustion of benzene at constant volume is $-3263.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$; heat of combustion (in $\mathrm{kJ}$ $\mathrm{mol}^{-1}$ ) of benzene at constant pressure will be $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

(2018 Main)

(a) 4152.6

(b) -452.46

(c) 3260

(d) -3267.6

(2017 Main)

Show Answer

Solution:

  1. Key idea Calculate the heat of combustion with the help of following formula

$$ \Delta H_{p}=\Delta U+\Delta n_{g} R T $$

where, $\Delta H_{p}=$ Heat of combustion at constant pressure

$\Delta U=$ Heat at constant volume (It is also called $\Delta E$ )

$\Delta n_{g}=$ Change in number of moles (In gaseous state).

$R=$ Gas constant $; T=$ Temperature.

From the equation,

$$ \mathrm{C}{6} \mathrm{H}{6}(l)+\frac{15}{2} \mathrm{O}{2}(g) \longrightarrow 6 \mathrm{CO}{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) $$

Change in the number of gaseous moles i.e.

$$ \Delta n_{g}=6-\frac{15}{2}=-\frac{3}{2} \text { or }-1.5 $$

Now we have $\Delta n_{g}$ and other values given in the question are

$$ \begin{aligned} \Delta U & =-3263.9 \mathrm{~kJ} / \mathrm{mol} \ T & =25^{\circ} \mathrm{C}=273+25=298 \mathrm{~K} \ R & =8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \end{aligned} $$

So, $\Delta H_{p}=(-3263.9)+(-1.5) \times 8.314 \times 10^{-3} \times 298$

$$ =-3267.6 \mathrm{~kJ} \mathrm{~mol}^{-1} $$