The Solid State - Result Question 23

####23. If ’ $a$ ’ stands for the edge length of the cubic systems : simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively,

[2008]

(a) $\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$

(b) $\frac{1}{2} a: \sqrt{3} a: \frac{1}{\sqrt{2}} a$

(c) $\frac{1}{2} a: \frac{\sqrt{3}}{2} a: \frac{\sqrt{3}}{2} a$

(d) $a: \sqrt{3} a: \sqrt{2} a$

Show Answer

Solution:

  1. (a) Following generalization can be easily derived for various types of lattice arrangements in cubic cells between the edge length $(a)$ of the cell and $r$ the radius of the sphere.

For simple cubic : $a=2 r$ or $r=\frac{a}{2}$

For body centred cubic :

$a=\frac{4}{\sqrt{3}} r$ or $r=\frac{\sqrt{3}}{4} a$

For face centred cubic :

$a=2 \sqrt{2} r$ or $r=\frac{1}{2 \sqrt{2}} a$

Thus the ratio of radii of spheres will be simple : bcc : fcc

$=\frac{a}{2}: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$



NCERT Chapter Video Solution

Dual Pane